Skip to main content

User-Pairing Scheme in NOMA Systems: A PSO-Based Approach

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2019)

Abstract

Non-orthogonal multiple access (NOMA) is considered a promising technology for improving the spectral efficiency in fifth generation communication systems. In contrast to orthogonal multiple access (OMA), NOMA allows to allocate one frequency channel to multiple users at the same time within the same cell. Basically, this is possible through power-domain superposition coding (SC) multiplexing at transmitter and successive interference cancellation (SIC) at receiver. For this reason, either an optimal power allocation scheme and an optimal user-aggregation policy result to have a key role on NOMA systems, especially in power constrained scenarios like disaster communications. In this paper, a particle swarm optimization (PSO)-based approach for user aggregation in NOMA systems is presented. The efficiency of this approach in finding the optimal aggregation scheme which require the minimum transmission power, maintaining the quality of service (QoS) constraint of each user, is evaluated through simulations, providing comments and remarks about the obtained results.

This work was supported in part by the Newton Prize 2017 and the Newton Fund Institutional Link through the Fly-by-Flood Monitoring Project under Grant ID 428328486, which is delivered by the British Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings of IEEE Swarm Intelligence Symposium, pp. 120–127, April 2007. https://doi.org/10.1109/SIS.2007.368035

  2. Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., Wang, Z.: Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015). https://doi.org/10.1109/MCOM.2015.7263349

    Article  Google Scholar 

  3. Ding, Z., Fan, P., Poor, H.V.: Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol. 65(8), 6010–6023 (2016). https://doi.org/10.1109/TVT.2015.2480766

    Article  Google Scholar 

  4. Do, N.T., da Costa, D.B., Duong, T.Q., An, B.: A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Commun. Lett. 21(3), 664–667 (2017). https://doi.org/10.1109/LCOMM.2016.2631606

    Article  Google Scholar 

  5. Do, T.N., da Costa, D.B., Duong, T.Q., An, B.: Improving the performance of cell-edge users in MISO-NOMA systems using TAS and SWIPT-based cooperative transmissions. IEEE Trans. Green Commun. Netw. 2(1), 49–62 (2018). https://doi.org/10.1109/TGCN.2017.2777510

    Article  Google Scholar 

  6. Do, T.N., da Costa, D.B., Duong, T.Q., An, B.: Improving the performance of cell-edge users in NOMA systems using cooperative relaying. IEEE Trans. Commun. 66(5), 1883–1901 (2018). https://doi.org/10.1109/TCOMM.2018.2796611

    Article  Google Scholar 

  7. Fettweis, G., Alamouti, S.: 5G: personal mobile internet beyond what cellular did to telephony. IEEE Commun. Mag. 52(2), 140–145 (2014). https://doi.org/10.1109/MCOM.2014.6736754

    Article  Google Scholar 

  8. Hojeij, M., Farah, J., Nour, C.A., Douillard, C.: Resource allocation in downlink non-orthogonal multiple access (NOMA) for future radio access. In: Proceedings of IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–6, May 2015. https://doi.org/10.1109/VTCSpring.2015.7146056

  9. Islam, S.M.R., Avazov, N., Dobre, O.A., Kwak, K.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutorials 19(2), 721–742 (2017). https://doi.org/10.1109/COMST.2016.2621116

    Article  Google Scholar 

  10. Jordehi, A.R., Jasni, J.: Particle swarm optimisation for discrete optimisation problems: a review. Artif. Intell. Rev. 43(2), 243–258 (2015)

    Article  Google Scholar 

  11. Jovović, I., Husnjak, S., Forenbacher, I., Maček, S.: Innovative application of 5G and blockchain technology in industry 4.0. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 6(18) (2019). https://doi.org/10.4108/eai.28-3-2019.157122

    Article  Google Scholar 

  12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995. https://doi.org/10.1109/ICNN.1995.488968

  13. Kuila, P., Jana, P.K.: Energy efficient clustering and routing algorithms for wireless sensor networks: particle swarm optimization approach. Eng. Appl. Artif. Intell. 33, 127 – 140 (2014). https://doi.org/10.1016/j.engappai.2014.04.009. http://www.sciencedirect.com/science/article/pii/S0952197614000852

    Article  Google Scholar 

  14. Lee, S.: Cooperative non-orthogonal multiple access for future wireless communications. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 5(17) (2018). https://doi.org/10.4108/eai.19-12-2018.156078

    Article  Google Scholar 

  15. Lee, S., da Costa, D.B., Vien, Q., Duong, T.Q., de Sousa, Jr., R.T., : Non-orthogonal multiple access schemes with partial relay selection. IET Commun. 11(6), 846–854 (2017). https://doi.org/10.1049/iet-com.2016.0836

    Article  Google Scholar 

  16. Lee, S., Duong, T.Q., da Costa, D.B., Ha, D., Nguyen, S.Q.: Underlay cognitive radio networks with cooperative non-orthogonal multiple access. IET Commun. 12(3), 359–366 (2018). https://doi.org/10.1049/iet-com.2017.0559

    Article  Google Scholar 

  17. Liang, W., Ding, Z., Li, Y., Song, L.: User pairing for downlink non-orthogonal multiple access networks using matching algorithm. IEEE Trans. Commun. 65(12), 5319–5332 (2017). https://doi.org/10.1109/TCOMM.2017.2744640

    Article  Google Scholar 

  18. Mavromatis, I., Tassi, A., Rigazzi, G., Piechocki, R.J., Nix, A.: Multi-radio 5G architecture for connected and autonomous vehicles: application and design insights. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 4(13) (2018). https://doi.org/10.4108/eai.20-3-2018.154368

    Article  Google Scholar 

  19. Nasir, A.A., Tuan, H.D., Duong, T.Q., Poor, H.V.: UAV-enabled communication using NOMA. IEEE Trans. Commun. 1 (2019). https://doi.org/10.1109/TCOMM.2019.2906622

    Article  Google Scholar 

  20. Nasir, A.A., Tuan, H.D., Duong, T.Q., Debbah, M.: NOMA throughput and energy efficiency in energy harvesting enabled networks. IEEE Transactions. Commun. 1, ISSN 0090-6778 (2019). https://doi.org/10.1109/TCOMM.2019.2919558

  21. Nguyen, L.D.: Resource allocation for energy efficiency in 5G wireless networks. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 5(14) (2018). https://doi.org/10.4108/eai.27-6-2018.154832

    Article  Google Scholar 

  22. Nguyen, V., Tuan, H.D., Duong, T.Q., Poor, H.V., Shin, O.: Precoder design for signal superposition in MIMO-NOMA multicell networks. IEEE J. Sel. Areas Commun. 35(12), 2681–2695 (2017). https://doi.org/10.1109/JSAC.2017.2726007

    Article  Google Scholar 

  23. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., Higuchi, K.: Non-orthogonal multiple access (NOMA) for cellular future radio access. In: Proceedings of IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–5, June 2013. https://doi.org/10.1109/VTCSpring.2013.6692652

  24. Tuan, H.D., Nasir, A.A., Nguyen, H.H., Duong, T.Q., Poor, H.V.: Non-orthogonal multiple access with improper Gaussian signaling. J. Sel. Top. Sign. Process. 13(3), 496–507 (2019). https://doi.org/10.1109/JSTSP.2019.2901993

    Article  Google Scholar 

  25. Zhang, Y., Wang, H., Zheng, T., Yang, Q.: Energy-efficient transmission design in non-orthogonal multiple access. IEEE Trans. Veh. Technol. 66(3), 2852–2857 (2017). https://doi.org/10.1109/TVT.2016.2578949

    Article  Google Scholar 

  26. Zhu, J., Wang, J., Huang, Y., He, S., You, X., Yang, L.: On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE J. Sel. Areas Commun. 35(12), 2744–2757 (2017). https://doi.org/10.1109/JSAC.2017.2725618

    Article  Google Scholar 

  27. Zhu, L., Zhang, J., Xiao, Z., Cao, X., Wu, D.O.: Optimal user pairing for downlink non-orthogonal multiple access (NOMA). IEEE Wirel. Commun. Lett. 1 (2018). https://doi.org/10.1109/LWC.2018.2853741

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Masaracchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masaracchia, A., Nguyen, L.D., Duong, T.Q., da Costa, D.B., Le-Tien, T. (2019). User-Pairing Scheme in NOMA Systems: A PSO-Based Approach. In: Duong, T., Vo, NS., Nguyen, L., Vien, QT., Nguyen, VD. (eds) Industrial Networks and Intelligent Systems. INISCOM 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-30149-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30149-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30148-4

  • Online ISBN: 978-3-030-30149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics