Skip to main content

Optical Scatter—Techniques and Analysis

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 223))

Abstract

Optical surfaces of components in lasers, telescopes, cameras, and eyewear, and Si wafers with nanometre devices in the semiconductor industry are fabricated to increasingly rigorous standards to improve performance, quality, and yield. This trend necessitates the development of novel techniques, innovative technology, and integrable systems for the detection and evaluation of defects and inaccuracies at nanometre levels. Surface metrology must be achieved at high-speed, utilizing synergism of rapid sampling, low noise data acquisition, analytical software, and graphics. Intelligent monitoring of various parameters, operating concurrently with fabrication processes in feedback loops, could converge industrial systems to true nanoscale production. Optical scatter is a viable inspection technique utilized in photonics and semiconductor manufacturing, where optics and Si wafers are scanned in entirety, within a matter of a few minutes, to produce detailed maps of defects, device irregularities, surface roughness, shape inaccuracies, and thin film composition. We explore advanced concepts and technology based on optical scatter measured in triangulation off a target surface with a passive sensor, integrated with nanometre scanning capability, and real-time software analysis to measure and resolve various operating parameters in industrial environments, in conjunction with the physical quality of the finished product. Our results demonstrate the limitations of contemporary manufacturing with a view to future development and process optimization, leading consistently to true nanoscale accuracy. The techniques presented herewith are tractable, and can easily be configured for the manufacture of sub-µm semiconductor devices to large meter-size optics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Azzam, N. Bashara, Ellipsometry and Polarized Light (Elsevier, 1999)

    Google Scholar 

  2. O. Heavens, Optical Properties of Thin Solid Films (Dover, 1955)

    Google Scholar 

  3. E. Church, H. Jenkinson, J. Zavada, Relationship between surface scattering and microtopographic features. Opt. Eng. 18(2) (1979)

    Google Scholar 

  4. M. Longuet-Higgins, Statistical properties of an isotropic random surface. Phil. Trans. A 250 (1957)

    Google Scholar 

  5. J. Stover, Optical Scattering, 2nd edn. (SPIE Optical Engineering Press, Washington, 1995)

    Google Scholar 

  6. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998)

    Google Scholar 

  7. T. Draine, P. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11(4) (1994)

    Google Scholar 

  8. S. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, 1981)

    Google Scholar 

  9. P. Horowitz, W. Hill, The Art of Electronics, 2nd edn. (Cambridge University Press, 1989)

    Google Scholar 

  10. S. Soãres, Nanoscale Non-Contact Laser Measurement of Precision Machine Tooling and Optical Surfaces, Photoptics 2018 (Madeira, Portugal, 2018)

    Google Scholar 

Download references

Acknowledgements

Financial and/or technical assistance for this work was provided from several sources at various times, including the US Naval Research Laboratory, California Institute of Technology, US Air Force, NASA—Jet Propulsion Laboratory, the Livermore Laboratory, the National Research Council; and is in dedication to Esmeralda and Benjamin Soãres. Dr. Brian Limketkai and Dr. Payam Pakzad at Caltech provided helpful experimental assistance in this project. Additional assistance was provided by Dr. Andrew Huntington and Dr. Neil Jones at Caltech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schubert Soãres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soãres, S. (2019). Optical Scatter—Techniques and Analysis. In: Ribeiro, P., Raposo, M. (eds) Optics, Photonics and Laser Technology 2018. Springer Series in Optical Sciences, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-30113-2_1

Download citation

Publish with us

Policies and ethics