Advertisement

Structure-Driven Multiple Constraint Acquisition

  • Dimosthenis C. TsourosEmail author
  • Kostas Stergiou
  • Christian Bessiere
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11802)

Abstract

MQuAcq is an algorithm for active constraint acquisition that has been shown to outperform previous algorithms such as QuAcq and MultiAcq. In this paper, we exhibit two important drawbacks of MQuAcq. First, for each negative example, the number of recursive calls to the main procedure of MQuAcq can be non-linear, making it impractical for large problems. Second, MQuAcq, as well as QuAcq and MultiAcq, does not take into account the structure of the learned problem. We propose MQuAcq-2, a new algorithm based on MQuAcq that integrates solutions to both these problems. MQuAcq-2 exploits the structure of the learned problem by focusing the queries it generates to quasi-cliques of constraints. When dealing with a negative query, it only requires a linear number of iterations. MQuAcq-2 outperforms MQuAcq, especially on large problems.

References

  1. 1.
    Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif. Intell. 244, 315–342 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bessiere, C., et al.: New approaches to constraint acquisition. In: Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi, D. (eds.) Data Mining and Constraint Programming. LNCS (LNAI), vol. 10101, pp. 51–76. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50137-6_3CrossRefGoogle Scholar
  3. 3.
    Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30201-8_12zbMATHCrossRefGoogle Scholar
  4. 4.
    Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space algorithm for acquiring constraint satisfaction problems. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 23–34. Springer, Heidelberg (2005).  https://doi.org/10.1007/11564096_8CrossRefGoogle Scholar
  5. 5.
    Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In: 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), vol. 1, pp. 45–52. IEEE (2010)Google Scholar
  6. 6.
    Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33558-7_13CrossRefGoogle Scholar
  7. 7.
    Bshouty, N.: Exact learning boolean functions via the monotone theory. Inf. Comput. 123(1), 146–153 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bshouty, N.H.: Exact learning from an honest teacher that answers membership queries. Theor. Comput. Sci. 733, 4–43 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)MathSciNetGoogle Scholar
  10. 10.
    Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M., et al.: Query-driven constraint acquisition. In: International Joint Conference on Artificial Intelligence (IJCAI), vol. 7, pp. 50–55 (2007)Google Scholar
  11. 11.
    Shchekotykhin, K., Friedrich, G.: Argumentation based constraint acquisition. In: Ninth IEEE International Conference on Data Mining, pp. 476–482. IEEE (2009)Google Scholar
  12. 12.
    Bessiere, C., et al.: Constraint acquisition via partial queries. In: International Joint Conference on Artificial Intelligence (IJCAI), vol. 13, pp. 475–481 (2013)Google Scholar
  13. 13.
    Freuder, E.C., Wallace, R.J.: Suggestion strategies for constraint-based matchmaker agents. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 192–204. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-49481-2_15CrossRefGoogle Scholar
  14. 14.
    Daoudi, A., Mechqrane, Y., Bessiere, C., Lazaar, N., Bouyakhf, E.H.: Constraint acquisition using recommendation queries. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 720–726 (2016)Google Scholar
  15. 15.
    Bessiere, C., Coletta, R., Daoudi, A., Lazaar, N., Mechqrane, Y., Bouyakhf, E.H.: Boosting constraint acquisition via generalization queries. In: European Conference on Artificial Intelligence (ECAI), pp. 99–104 (2014)Google Scholar
  16. 16.
    Arcangioli, R., Bessiere, C., Lazaar, N.: Multiple constraint aquisition. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 698–704 (2016)Google Scholar
  17. 17.
    Tsouros, D.C., Stergiou, K., Sarigiannidis, P.G.: Efficient methods for constraint acquisition. In: 24th International Conference on Principles and Practice of Constraint Programming (2018)Google Scholar
  18. 18.
    Daoudi, A., Lazaar, N., Mechqrane, Y., Bessiere, C., Bouyakhf, E.H.: Detecting types of variables for generalization in constraint acquisition. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 413–420. IEEE (2015)Google Scholar
  19. 19.
    Pardalos, J., Resende, M.: On maximum clique problems in very large graphs. DIMACS Ser. 50, 119–130 (1999)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45995-2_51CrossRefGoogle Scholar
  21. 21.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)zbMATHCrossRefGoogle Scholar
  22. 22.
    Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: Proceedings of the 31st International Conference on Very large data bases, VLDB Endowment, pp. 721–732 (2005)Google Scholar
  23. 23.
    Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Newman, M.E.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  25. 25.
    Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Min. Knowl. Disc. 24(3), 515–554 (2012)CrossRefGoogle Scholar
  26. 26.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)CrossRefGoogle Scholar
  27. 27.
    Leicht, E.A., Holme, P., Newman, M.E.: Vertex similarity in networks. Phys. Rev. E 73(2), 026120 (2006)CrossRefGoogle Scholar
  28. 28.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  29. 29.
    Cabon, B., De Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assignment. Constraints 4(1), 79–89 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dimosthenis C. Tsouros
    • 1
    Email author
  • Kostas Stergiou
    • 1
  • Christian Bessiere
    • 2
  1. 1.Department of Informatics and Telecommunications EngineeringUniversity of Western MacedoniaKozaniGreece
  2. 2.CNRS, University of MontpellierMontpellierFrance

Personalised recommendations