Skip to main content

Vehicle Routing by Learning from Historical Solutions

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11802))

Abstract

The goal of this paper is to investigate a decision support system for vehicle routing, where the routing engine learns from the subjective decisions that human planners have made in the past, rather than optimizing a distance-based objective criterion. This is an alternative to the practice of formulating a custom VRP for every company with its own routing requirements. Instead, we assume the presence of past vehicle routing solutions over similar sets of customers, and learn to make similar choices. The approach is based on the concept of learning a first-order Markov model, which corresponds to a probabilistic transition matrix, rather than a deterministic distance matrix. This nevertheless allows us to use existing arc routing VRP software in creating the actual route plans. For the learning, we explore different schemes to construct the probabilistic transition matrix. Our results on a use-case with a small transportation company show that our method is able to generate results that are close to the manually created solutions, without needing to characterize all constraints and sub-objectives explicitly. Even in the case of changes in the client sets, our method is able to find solutions that are closer to the actual route plans than when using distances, and hence, solutions that would require fewer manual changes to transform into the actual route plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global constraints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_4

    Chapter  Google Scholar 

  2. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_13

    Chapter  Google Scholar 

  3. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif. Intell. 244, 315–342 (2017)

    Article  MathSciNet  Google Scholar 

  4. Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: Rich vehicle routing problem: survey. ACM Comput. Surv. (CSUR) 47(2), 32 (2015)

    Google Scholar 

  5. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language modeling. Comput. Speech Lang. 13(4), 359–394 (1999)

    Article  Google Scholar 

  6. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959)

    Article  MathSciNet  Google Scholar 

  7. Deguchi, Y., Kuroda, K., Shouji, M., Kawabe, T.: HEV charge/discharge control system based on navigation information. Technical report, SAE Technical Paper (2004)

    Google Scholar 

  8. Dragone, P., Teso, S., Passerini, A.: Constructive preference elicitation. Front. Robot. AI 4, 71 (2018)

    Article  Google Scholar 

  9. Drexl, M.: Rich vehicle routing in theory and practice. Logistics Res. 5(1–2), 47–63 (2012)

    Article  Google Scholar 

  10. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

    Article  Google Scholar 

  11. Johnson, W.E.: Probability: the deductive and inductive problems. Mind 41(164), 409–423 (1932)

    Article  Google Scholar 

  12. Krumm, J.: A Markov model for driver turn prediction. In: Withrow, l.L. (eds.) SAE 2008 World Congress, Distinguished Speaker Award, April 2008

    Google Scholar 

  13. Laporte, G.: What you should know about the vehicle routing problem. Naval Res. Logistics (NRL) 54(8), 811–819 (2007)

    Article  MathSciNet  Google Scholar 

  14. Lau, H.C., Liang, Z.: Pickup and delivery with time windows: algorithms and test case generation. Int. J. Artif. Intell. Tools 11(03), 455–472 (2002)

    Article  Google Scholar 

  15. Munari, P., Dollevoet, T., Spliet, R.: A generalized formulation for vehicle routing problems. arXiv preprint arXiv:1606.01935 (2016)

  16. Picard-Cantin, É., Bouchard, M., Quimper, C.-G., Sweeney, J.: Learning parameters for the sequence constraint from solutions. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 405–420. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_26

    Chapter  Google Scholar 

  17. Potvin, J.Y., Dufour, G., Rousseau, J.M.: Learning vehicle dispatching with linear programming models. Comput. Oper. Res. 20(4), 371–380 (1993)

    Article  Google Scholar 

  18. Wang, X., et al.: Building efficient probability transition matrix using machine learning from big data for personalized route prediction. Procedia Comput. Sci. 53, 284–291 (2015)

    Article  Google Scholar 

  19. Ye, N., Wang, Z., Malekian, R., Lin, Q., Wang, R.: A method for driving route predictions based on hidden markov model. Math. Problems Eng. 2015, 12 (2015)

    Google Scholar 

  20. Yu, M., Nagarajan, V., Shen, S.: Minimum makespan vehicle routing problem with compatibility constraints. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 244–253. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocsildes Canoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Canoy, R., Guns, T. (2019). Vehicle Routing by Learning from Historical Solutions. In: Schiex, T., de Givry, S. (eds) Principles and Practice of Constraint Programming. CP 2019. Lecture Notes in Computer Science(), vol 11802. Springer, Cham. https://doi.org/10.1007/978-3-030-30048-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30048-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30047-0

  • Online ISBN: 978-3-030-30048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics