Abstract
Mobile robots in flexible manufacturing systems can transport components for jobs between machines as well as process jobs on selected machines. While the job shop problem with transportation resources allows encapsulating of transportation, this work concentrates on the extended version of the problem, including the processing by mobile robots. We propose a novel constraint programming model for this problem where the crucial part of the model lies in a proper inclusion of the transportation. We have implemented it in the Optimization Programming Language using the CP Optimizer, and compare it with the existing mixed integer programming solver. While both approaches are capable of solving the problem optimally, a new constraint programming approach works more efficiently, and it can compute solutions in more than an order of magnitude faster. Given that, the results of more realistic data instances are delivered in real-time, which is very important in a smart factory.
Keywords
- Scheduling
- Constraint programming
- Mobile robot
- Flexible manufacturing system
- Transportation
- IBM ILOG CPLEX Optimization Studio
This is a preview of subscription content, access via your institution.
Buying options

(based on [11]).
Notes
- 1.
The source code, including data instances, is available from https://github.com/StanislavMurin/Scheduling-of-Mobile-Robots-using-Constraint-Programming.
- 2.
References
IBM ILOG CPLEX Optimization studio CP Optimizer user’s manual, version 12 release 8. IBM Corporation (2017)
IBM ILOG CPLEX Optimization studio OPL language user’s manual version 12 release 8. IBM Corporation (2017)
Achterberg, T.: Random seeds. IBM Community CPLEX Optimizer Forum, IBM Corporation (2013)
Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)
Artigues, C., Belmokhtar, S., Feillet, D.: A new exact solution algorithm for the job shop problem with sequence-dependent setup times. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 37–49. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24664-0_3
Baptiste, P., Laborie, P., Le Pape, C., Nuijten, W.: Chapter 22 constraint-based scheduling and planning. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence, vol. 2, pp. 761–799. Elsevier, Amsterdam (2006)
Berbeglia, G., Pesant, G., Rousseau, L.M.: Checking the feasibility ofdial-a-ride instances using constraint programming. Transp. Sci. 45, 399–412 (2011)
Bilge, U., Ulusoy, G.: A time window approach to simultaneous scheduling of machines and material handling system in an FMS. Oper. Res. 43(6), 1058–1070 (1995)
Cappart, Q., Thomas, C., Schaus, P., Rousseau, L.-M.: A constraint programming approach for solving patient transportation problems. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 490–506. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_32
Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann. Oper. Res. 153(1), 29–46 (2007)
Dang, Q.V., Nguyen, C.T., Rudová, H.: Scheduling of mobile robots for transportation and manufacturing tasks. J. Heuristics 25(2), 175–213 (2019)
Dang, Q.V., Rudová, H., Nguyen, C.T.: Adaptive large neighborhood search for scheduling of mobile robots. In: Proceedings of ACM GECCO Conference, pp. 224–232. ACM (2019)
Dejemeppe, C., Van Cauwelaert, S., Schaus, P.: The unary resource with transition times. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 89–104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_7
Focacci, F., Laborie, P., Nuijten, W.: Solving scheduling problems with setup times and alternative resources. In: Artificial Intelligence for Planning and Scheduling (AIPS), pp. 92–101 (2000)
Grimes, D., Hebrard, E.: Job shop scheduling with setup times and maximal time-lags: a simple constraint programming approach. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 147–161. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_19
Kilby, P., Shaw, P.: Chapter 23 vehicle routing. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence, vol. 2, pp. 801–836. Elsevier, New York (2006)
Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling. Constraints 23(2), 210–250 (2018)
Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014)
Liu, C., Aleman, D.M., Beck, J.C.: Modelling and solving the senior transportation problem. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 412–428. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_30
Madsen, O., et al.: Integration of mobile manipulators in an industrial production. Ind. Robot Int. J. Robot. Res. Appl. 42(1), 11–18 (2015)
Nouri, H.E., Driss, O.B., Ghédira, K.: A classification schema for the job shop scheduling problem with transportation resources: state-of-the-art review. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 464, pp. 1–11. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33625-1_1
Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems, Part I: transportation between customers and depot. Journal für Betriebswirtschaft 58(1), 21–51 (2008)
Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems, Part II: transportation between pickup and delivery locations. Journal für Betriebswirtschaft 58(2), 81–117 (2008)
Pinedo, M.L.: Planning and Scheduling in Manufacturing and Services, 2nd edn. Springer, New York (2009)
Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. Society for Industrial and Applied Mathematics, 2 edn. (2014)
Vilím, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_30
Acknowledgements
We would like to thank the anonymous reviewers for their careful reading of our paper and their insightful comments and suggestions.
Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the program “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Murín, S., Rudová, H. (2019). Scheduling of Mobile Robots Using Constraint Programming. In: Schiex, T., de Givry, S. (eds) Principles and Practice of Constraint Programming. CP 2019. Lecture Notes in Computer Science(), vol 11802. Springer, Cham. https://doi.org/10.1007/978-3-030-30048-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-30048-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30047-0
Online ISBN: 978-3-030-30048-7
eBook Packages: Computer ScienceComputer Science (R0)