Skip to main content

Scheduling of Mobile Robots Using Constraint Programming

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 11802)

Abstract

Mobile robots in flexible manufacturing systems can transport components for jobs between machines as well as process jobs on selected machines. While the job shop problem with transportation resources allows encapsulating of transportation, this work concentrates on the extended version of the problem, including the processing by mobile robots. We propose a novel constraint programming model for this problem where the crucial part of the model lies in a proper inclusion of the transportation. We have implemented it in the Optimization Programming Language using the CP Optimizer, and compare it with the existing mixed integer programming solver. While both approaches are capable of solving the problem optimally, a new constraint programming approach works more efficiently, and it can compute solutions in more than an order of magnitude faster. Given that, the results of more realistic data instances are delivered in real-time, which is very important in a smart factory.

Keywords

  • Scheduling
  • Constraint programming
  • Mobile robot
  • Flexible manufacturing system
  • Transportation
  • IBM ILOG CPLEX Optimization Studio

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30048-7_27
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-30048-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 1.

(based on [11]).

Notes

  1. 1.

    The source code, including data instances, is available from https://github.com/StanislavMurin/Scheduling-of-Mobile-Robots-using-Constraint-Programming.

  2. 2.

    https://sites.google.com/site/schedulingmobilerobots/.

References

  1. IBM ILOG CPLEX Optimization studio CP Optimizer user’s manual, version 12 release 8. IBM Corporation (2017)

    Google Scholar 

  2. IBM ILOG CPLEX Optimization studio OPL language user’s manual version 12 release 8. IBM Corporation (2017)

    Google Scholar 

  3. Achterberg, T.: Random seeds. IBM Community CPLEX Optimizer Forum, IBM Corporation (2013)

    Google Scholar 

  4. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

    CrossRef  MathSciNet  Google Scholar 

  5. Artigues, C., Belmokhtar, S., Feillet, D.: A new exact solution algorithm for the job shop problem with sequence-dependent setup times. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 37–49. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24664-0_3

    CrossRef  MATH  Google Scholar 

  6. Baptiste, P., Laborie, P., Le Pape, C., Nuijten, W.: Chapter 22 constraint-based scheduling and planning. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence, vol. 2, pp. 761–799. Elsevier, Amsterdam (2006)

    CrossRef  Google Scholar 

  7. Berbeglia, G., Pesant, G., Rousseau, L.M.: Checking the feasibility ofdial-a-ride instances using constraint programming. Transp. Sci. 45, 399–412 (2011)

    CrossRef  Google Scholar 

  8. Bilge, U., Ulusoy, G.: A time window approach to simultaneous scheduling of machines and material handling system in an FMS. Oper. Res. 43(6), 1058–1070 (1995)

    CrossRef  Google Scholar 

  9. Cappart, Q., Thomas, C., Schaus, P., Rousseau, L.-M.: A constraint programming approach for solving patient transportation problems. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 490–506. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_32

    CrossRef  Google Scholar 

  10. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann. Oper. Res. 153(1), 29–46 (2007)

    CrossRef  MathSciNet  Google Scholar 

  11. Dang, Q.V., Nguyen, C.T., Rudová, H.: Scheduling of mobile robots for transportation and manufacturing tasks. J. Heuristics 25(2), 175–213 (2019)

    CrossRef  Google Scholar 

  12. Dang, Q.V., Rudová, H., Nguyen, C.T.: Adaptive large neighborhood search for scheduling of mobile robots. In: Proceedings of ACM GECCO Conference, pp. 224–232. ACM (2019)

    Google Scholar 

  13. Dejemeppe, C., Van Cauwelaert, S., Schaus, P.: The unary resource with transition times. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 89–104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_7

    CrossRef  Google Scholar 

  14. Focacci, F., Laborie, P., Nuijten, W.: Solving scheduling problems with setup times and alternative resources. In: Artificial Intelligence for Planning and Scheduling (AIPS), pp. 92–101 (2000)

    Google Scholar 

  15. Grimes, D., Hebrard, E.: Job shop scheduling with setup times and maximal time-lags: a simple constraint programming approach. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 147–161. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_19

    CrossRef  MATH  Google Scholar 

  16. Kilby, P., Shaw, P.: Chapter 23 vehicle routing. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence, vol. 2, pp. 801–836. Elsevier, New York (2006)

    CrossRef  Google Scholar 

  17. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling. Constraints 23(2), 210–250 (2018)

    CrossRef  MathSciNet  Google Scholar 

  18. Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014)

    CrossRef  Google Scholar 

  19. Liu, C., Aleman, D.M., Beck, J.C.: Modelling and solving the senior transportation problem. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 412–428. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_30

    CrossRef  Google Scholar 

  20. Madsen, O., et al.: Integration of mobile manipulators in an industrial production. Ind. Robot Int. J. Robot. Res. Appl. 42(1), 11–18 (2015)

    CrossRef  Google Scholar 

  21. Nouri, H.E., Driss, O.B., Ghédira, K.: A classification schema for the job shop scheduling problem with transportation resources: state-of-the-art review. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 464, pp. 1–11. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33625-1_1

    CrossRef  Google Scholar 

  22. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems, Part I: transportation between customers and depot. Journal für Betriebswirtschaft 58(1), 21–51 (2008)

    CrossRef  Google Scholar 

  23. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems, Part II: transportation between pickup and delivery locations. Journal für Betriebswirtschaft 58(2), 81–117 (2008)

    CrossRef  Google Scholar 

  24. Pinedo, M.L.: Planning and Scheduling in Manufacturing and Services, 2nd edn. Springer, New York (2009)

    CrossRef  Google Scholar 

  25. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. Society for Industrial and Applied Mathematics, 2 edn. (2014)

    Google Scholar 

  26. Vilím, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_30

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their careful reading of our paper and their insightful comments and suggestions.

Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the program “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Murín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Murín, S., Rudová, H. (2019). Scheduling of Mobile Robots Using Constraint Programming. In: Schiex, T., de Givry, S. (eds) Principles and Practice of Constraint Programming. CP 2019. Lecture Notes in Computer Science(), vol 11802. Springer, Cham. https://doi.org/10.1007/978-3-030-30048-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30048-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30047-0

  • Online ISBN: 978-3-030-30048-7

  • eBook Packages: Computer ScienceComputer Science (R0)