Skip to main content

Design of a Low-Cost Aircraft Structural Material Based on Epoxy: Recycled Rubber Composites Modified with Multifunctional Nano Particles

  • Conference paper
  • First Online:

Abstract

Recycling is an intensely studied subject in terms of sustainable development and it offers clean and cost-efficient solutions in many industries. For this reason, manufacturers tend to find clean and cost-efficient solutions by utilizing recycled materials to produce new components. In this regard, rubbers have a very wide usage area in aeronautic and automotive industries including structural and interior body components. Rubbers are also used to modify brittle polymer components in the existence of hard, resistant fillers. In this study, fresh scrap EPDM (ethylene propylene diene monomer) rubbers are used to manufacture novel composites by modifying epoxy resin with the inclusion of alumina (Al2O3) fibers (AFs). In case of a homogeneous distribution, addition of AFs ensures desired mechanical properties due to its favorable structural characteristics such as interlocking effects of fibers. These novel composites can be used in the manufacture of various solid structural parts of the fuselage and suspension pads in aerospace industry. This paper primarily explains the manufacturing of these composites and after the mechanical characterization, numerical approaches are implemented to test the durability of the structures. The mechanical and physical properties of these composite systems are studied in the present work. Dynamic Mechanical Analysis (DMA) analyses are carried out to determine thermal-mechanical properties. Three-point bending and compression tests are performed to see the mechanical behavior of the composites. In the end, manufactured compositions are tested numerically in terms of the structural reliability of a body component in a commercial aircraft.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. May, Epoxy Resins: Chemistry and Technology, 2nd edn. (CRC Press, Boca Raton, 1987)

    Google Scholar 

  2. M. Branch, Preparation of nano-scale α-Al2O3 powder by the sol-gel method. Ceramics-Silikáty 55, 378–383 (2011)

    Google Scholar 

  3. A.B. Irez, J. Hay, I. Miskioglu, E. Bayraktar, Scrap-Rubber Based Composites Reinforced with Boron and Alumina (Springer, Cham, 2018), pp. 1–9

    Google Scholar 

  4. Z. Zhang, H. Lei, Preparation of α-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate. Microelectron. Eng. 85, 714–720 (2008). https://doi.org/10.1016/J.MEE.2008.01.001

    Article  Google Scholar 

  5. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  6. A.A. Balandin, S. Ghosh, W. Bao, et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  7. F. Scarpa, S. Adhikari, A. Srikantha Phani, Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20, 065709 (2009). https://doi.org/10.1088/0957-4484/20/6/065709

    Article  Google Scholar 

  8. A.B. Irez, E. Bayraktar, I. Miskioglu, Reinforcement of Recycled Rubber Based Composite with Nano-Silica and Graphene Hybrid Fillers (Springer, Cham, 2019), pp. 67–76

    Google Scholar 

  9. M.H.G. Wichmann, K. Schulte, H.D. Wagner, On nanocomposite toughness. Compos. Sci. Technol. 68, 329–331 (2008)

    Article  Google Scholar 

  10. Y.L. Liang, R.A. Pearson, Toughening mechanisms in epoxy–silica nanocomposites (ESNs). Polymer 50, 4895–4905 (2009)

    Article  Google Scholar 

  11. I. Srivastava, N. Koratkar, Fatigue and fracture toughness of epoxy nanocomposites. JOM J. Miner. Met. Mater. Soc. 62, 50–57 (2010)

    Article  Google Scholar 

  12. L.E. Nielsen, R.F. Landel, Mechanical Properties of Polymers and Composites (M. Dekker, New York, 1994)

    Google Scholar 

  13. R.N. Rothon, Particulate Fillers for Polymers, vol 12 (iSmithers Rapra Publishing, 2002)

    Google Scholar 

  14. R.N. Rothon, Mineral Fillers in Thermoplastics: Filler Manufacture and Characterisation, in Mineral Fillers in Thermoplastics I, (Springer, Berlin, 1999), pp. 67–107

    Chapter  Google Scholar 

  15. B. Wetzel, F. Haupert, M. Qiu Zhang, Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63, 2055–2067 (2003). https://doi.org/10.1016/S0266-3538(03)00115-5

    Article  Google Scholar 

  16. A.B. Irez, E. Bayraktar, I. Miskioglu, Recycled and devulcanized rubber modified epoxy-based composites reinforced with nano-magnetic iron oxide, Fe3O4. Compos. Part B Eng. 148, 1–13 (2018). https://doi.org/10.1016/J.COMPOSITESB.2018.04.047

    Article  Google Scholar 

  17. C. Kaynak, C. Celikbilek, G. Akovali, Use of silane coupling agents to improve epoxy–rubber interface. Eur. Polym. J. 39, 1125–1132 (2003). https://doi.org/10.1016/S0014-3057(02)00381-6

    Article  Google Scholar 

  18. S. Shokoohi, A. Arefazar, R. Khosrokhavar, Silane coupling agents in polymer-based reinforced composites: A review. J. Reinf. Plast. Compos. 27, 473–485 (2008)

    Article  Google Scholar 

  19. G. Zhang, F. Wang, J. Dai, Z. Huang, Effect of functionalization of graphene nanoplatelets on the mechanical and thermal properties of silicone rubber composites. Materials (Basel) 9, 92 (2016). https://doi.org/10.3390/ma9020092

    Article  Google Scholar 

  20. D. Dobrotă, G. Dobrotă, An innovative method in the regeneration of waste rubber and the sustainable development. J. Clean. Prod. 172, 3591–3599 (2018). https://doi.org/10.1016/J.JCLEPRO.2017.03.022

    Article  Google Scholar 

  21. C. Jacob, S.K. De, Powdered Rubber Waste in Rubber Compounds. pp. 234–271 (2005). https://doi.org/10.1201/9780203499337-13

  22. L. Jia, Y. Li, D. Yan, Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 121, 267–273 (2017)

    Article  Google Scholar 

  23. E. Bilgili, A. Dybek, H. Arastoopour, B. Bernstein, A new recycling technology: Compression molding of pulverized rubber waste in the absence of virgin rubber. J Elastomers Plast. 35, 235–256 (2003). https://doi.org/10.1177/0095244303035003004

    Article  Google Scholar 

  24. A.B. Irez, E. Bayraktar, I. Miskioglu, Flexural fatigue damage analyses of recycled rubber—modified epoxy-based composites reinforced with alumina fibres. Fatigue Fract. Eng. Mater. Struct. 42, 959–971 (2019). https://doi.org/10.1111/ffe.12964

    Article  Google Scholar 

  25. A.B. Irez, Conception, élaboration et caractérisation des composites modifiées par incorporation de particules de caoutchouc recyclées et devulcanisées à base d’époxy : Une approche expérimentale pour des mécanismes de renforcement (Doctoral dissertation, Université Paris Saclay, 2018)

    Google Scholar 

  26. Opusaircraft.com. Opus Aircraft Information. [Online]. (2019). http://www.opusaircraft.com/. Accessed 25 Feb 2019

  27. A.B. Irez, E. Bayraktar, I. Miskioglu, Devulcanized Rubber Based Composite Design Reinforced with Nano Silica, Graphene Nano Platelets (GnPs) and Epoxy for “Aircraft Wing Spar” to Withstand Bending Moment (Springer, Cham, 2019), pp. 9–22

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. H-A. Alhas from Airbus-Space, London/UK for general support and also for his valuable discussion in certain stages of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Irez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Irez, A.B., Bayraktar, E. (2020). Design of a Low-Cost Aircraft Structural Material Based on Epoxy: Recycled Rubber Composites Modified with Multifunctional Nano Particles. In: Singh, R., Slipher, G. (eds) Mechanics of Composite and Multi-functional Materials, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30028-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30028-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30027-2

  • Online ISBN: 978-3-030-30028-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics