Skip to main content

Vibrational Analysis of Biopolymer-Based Hydrogels Using 3D-Printed Test Structures for Applications in Bioprinting

  • 323 Accesses

Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


The mechanical properties of hydrogels suitable for applications in the field of bioprinting, which tries to develop three-dimensional tissue equivalents, are crucial for the proper fulfilment of their functions in the human body. This aspect is especially important regarding types of tissues which have to withstand applied mechanical forces. Due to their high water content similar to the human body and their tunable mechanical properties, hydrogels based on biopolymers are ideally suited for such applications. In this work, the first results of a novel method for the indirect measurement of the mechanical properties of hydrogels using laser-Doppler vibrometry and 3D-printed test structures are presented. Thanks to the experimental design hydrogels can be cast directly over such beam-like test structures without any leakage. First results show that the resonance frequencies of the beam structure are modulated by the material properties of the different hydrogels placed on it, enabling future applications and further experiments. For comparing the measurement data with the mechanical properties of the samples used, indentation-based measurements have been carried out. This approach can be integrated into existing bioprinting workflows and enables the non-destructive monitoring of biopolymer-based hydrogels in their mechanical properties.


  • Laser-Doppler vibrometry
  • Hydrogels
  • Vibrational analysis
  • Bioprinting
  • Additive manufacturing

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30013-5_6
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-30013-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. J. Malda, J. Visser, F.P. Melchels, T. Jüngst, W.E. Hennink, W.J.A. Dhert, J. Groll, D.W. Hutmacher, 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028 (2013).

    CrossRef  Google Scholar 

  2. J.K. Carrow, P. Kerativitayanan, M.K. Jaiswal, G. Lokhande, A.K. Gaharwar, Polymers for bioprinting, in Essentials 3D biofabrication translation, (Elsevier, Amsterdam, 2015), pp. 229–248.

    CrossRef  Google Scholar 

  3. A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012).

    CrossRef  Google Scholar 

  4. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CrossRef  Google Scholar 

  5. J. Swift, I.L. Ivanovska, A. Buxboim, T. Harada, P.C.D.P. Dingal, J. Pinter, J.D. Pajerowski, K.R. Spinler, J.W. Shin, M. Tewari, F. Rehfeldt, D.W. Speicher, D.E. Discher, Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341 (2013).

    CrossRef  Google Scholar 

  6. L. Rossetti, L.A. Kuntz, E. Kunold, J. Schock, H. Grabmayr, S.A. Sieber, R. Burgkart, A.R. Bausch, The microstructure and micromechanics of the tendon–bone insertion. Nat. Mater. 16(6), 664–670 (2017).

    CrossRef  Google Scholar 

  7. M.L. Oyen, Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59, 44–59 (2014).

    CrossRef  Google Scholar 

  8. S.J. Rothberg, M.S. Allen, P. Castellini, D. Di Maio, J.J.J. Dirckx, D.J. Ewins, B.J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E.P. Tomasini, S. Vanlanduit, J.F. Vignola, An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 99, 11–22 (2016).

    CrossRef  Google Scholar 

  9. P. Castellini, M. Martarelli, E.P. Tomasini, Laser doppler vibrometry: development of advanced solutions answering to technology’s needs. Mech. Syst. Signal Process. 20, 1265–1285 (2006).

    CrossRef  Google Scholar 

  10. J.J. Rosowski, R.P. Mehta, S.P. Merchant, Diagnostic utility of laser-doppler vibrometry in conductive hearing loss with normal tympanic membrane. Otol. Neurotol. 24, 165–175 (2003).

    CrossRef  Google Scholar 

  11. T. Schuurman, D.J. Rixen, C.A. Swenne, J.W. Hinnen, Feasibility of laser doppler vibrometry as potential diagnostic tool for patients with abdominal aortic aneurysms. J. Biomech. 46, 1113–1120 (2013).

    CrossRef  Google Scholar 

  12. N.E. Conza, D.J. Rixen, S. Plomp, Vibration testing of a fresh-frozen human pelvis: The role of the pelvic ligaments. J. Biomech. 40, 1599–1605 (2007).

    CrossRef  Google Scholar 

  13. F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlinear Sci. Numer. Simul. 15, 939–945 (2010).

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. G. Xu, C. Wang, T. Feng, D.E. Oliver, X. Wang, Non-contact photoacoustic tomography with a laser Doppler vibrometer”, Proc. SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing 2014, 894332 (3 March 2014);

  15. M. Jaschke, H.J. Butt, Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7 (1995).

    CrossRef  Google Scholar 

  16. I.N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965).

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. D.C. Lin, E.K. Dimitriadis, F. Horkay, Robust strategies for automated AFM force curve analysis—I. Non-adhesive indentation of soft, inhomogeneous materials. J. Biomech. Eng. 129, 430–440 (2006)

    CrossRef  Google Scholar 

  18. C. Prein, N. Warmbold, Z. Farkas, M. Schieker, A. Aszodi, H. Clausen-Schaumann, Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy. Matrix Biol. 50, 1–15 (2016).

    CrossRef  Google Scholar 

Download references


The authors acknowledge financial support through the research focus “Herstellung und biophysikalische Charakterisierung drei-dimensionaler Gewebe – CANTER” of the Bavarian State Ministry for Science and Education and the financial support through the “BayWISS – Ressourceneffizienz und Werkstoffe” program.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Schwarz, S., Hartmann, B., Moerl, R., Sudhop, S., Clausen-Schaumann, H., Rixen, D. (2020). Vibrational Analysis of Biopolymer-Based Hydrogels Using 3D-Printed Test Structures for Applications in Bioprinting. In: Grady, M. (eds) Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30012-8

  • Online ISBN: 978-3-030-30013-5

  • eBook Packages: EngineeringEngineering (R0)