Advertisement

Conductive ABS/Ni Composite Filaments for Fused Deposition Modeling of Structural Electronics

  • Bartłomiej PodsiadłyEmail author
  • Andrzej Skalski
  • Marcin Słoma
Conference paper
  • 268 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1044)

Abstract

This article presents the development and fabrication process of electrically conductive composite filaments for fused deposition modeling technology. These composites materials consist of ABS polymer as the matrix and nickel powder as the functional phase. The electrical resistance of composites with different amount of nickel powder has been measured which allowed to identifying percolation threshold for developed material. Voltage-current characteristics were also elaborated to verify Ohmic character of developed filaments. Conductive, 3D printed demonstrator made with ABS/Ni filament is also presented.

Keywords

Composites Additive manufacturing 3D printing Electrical measurements 

Notes

Acknowledgements

The authors are grateful for financial support from Warsaw University of Technology, Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering and Foundation for Polish Science project nr First TEAM/2016-1/7.

References

  1. 1.
    Guo, N., Leu, M.C.: Additive manufacturing: technology, applications and research needs. Front Mech. Eng. 8, 215–243 (2013).  https://doi.org/10.1007/s11465-013-0248-8CrossRefGoogle Scholar
  2. 2.
    Song, Y., Yan, Y., Zhang, R., Xu, D., Wang, F.: Manufacture of the die of an automobile deck part based on rapid prototyping and rapid tooling technology. J. Mater. Process. Technol. 120, 237–242 (2002).  https://doi.org/10.1016/S0924-0136(01)01165-7CrossRefGoogle Scholar
  3. 3.
    Uriondo, A., Esperon-Miguez, M., Perinpanayagam, S.: The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 229, 2132–2147 (2015).  https://doi.org/10.1177/0954410014568797CrossRefGoogle Scholar
  4. 4.
    Lim, S., Buswell, R.A., Le, T.T., Austin, S.A., Gibb, A.G.F., Thorpe, T.: Developments in construction-scale additive manufacturing processes. Autom. Constr. 21, 262–268 (2012).  https://doi.org/10.1016/j.autcon.2011.06.010CrossRefGoogle Scholar
  5. 5.
    Javaid, M., Haleem, A.: Additive manufacturing applications in medical cases: a literature based review. Alex. J. Med. 54, 411–422 (2018)CrossRefGoogle Scholar
  6. 6.
    Barazanchi, A., Li, K.C., Al-Amleh, B., Lyons, K., Waddell, J.N.: Additive technology: update on current materials and applications in dentistry. J. Prosthodont. 26, 156–163 (2017).  https://doi.org/10.1111/jopr.12510CrossRefGoogle Scholar
  7. 7.
    Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018).  https://doi.org/10.1016/j.compositesb.2018.02.012CrossRefGoogle Scholar
  8. 8.
    Dul, S., Pegoretti, A., Fambri, L.: Effects of the nanofillers on physical properties of acrylonitrile-butadiene-styrene nanocomposites: comparison of graphene nanoplatelets and multiwall carbon nanotubes. Nanomaterials 8, 674 (2018).  https://doi.org/10.3390/nano8090674CrossRefGoogle Scholar
  9. 9.
    Castles, F., Isakov, D., Lui, A., Lei, Q., Dancer, C.E.J., Wang, Y., Janurudin, J.M., Speller, S.C., Grovenor, C.R.M., Grant, P.S.: Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Sci. Rep. 6 (2016).  https://doi.org/10.1038/srep22714
  10. 10.
    Nikzad, M., Masood, S.H., Sbarski, I.: Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater. Des. 32, 3448–3456 (2011).  https://doi.org/10.1016/j.matdes.2011.01.056CrossRefGoogle Scholar
  11. 11.
    Gnanasekaran, K., Heijmans, T., van Bennekom, S., Woldhuis, H., Wijnia, S., de With, G., Friedrich, H.: 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl. Mater. Today 9, 21–28 (2017).  https://doi.org/10.1016/j.apmt.2017.04.003CrossRefGoogle Scholar
  12. 12.
    Podsiadły, B., Skalski, A., Wałpuski, B., Słoma, M.: Heterophase materials for fused filament fabrication of structural electronics. J. Mater. Sci.: Mater. Electron. 30, 1236–1245 (2019).  https://doi.org/10.1007/s10854-018-0391-4CrossRefGoogle Scholar
  13. 13.
    Kirkpatrick, S.: Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973).  https://doi.org/10.1103/RevModPhys.45.574CrossRefGoogle Scholar
  14. 14.
    Wu, Y., Isakov, D., Grant, P.S.: Fabrication of composite filaments with high dielectric permittivity for fused deposition 3D printing. Materials 10, 1218 (2017).  https://doi.org/10.3390/ma10101218CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bartłomiej Podsiadły
    • 1
    Email author
  • Andrzej Skalski
    • 1
  • Marcin Słoma
    • 1
  1. 1.Institute of Metrology and Biomedical EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations