Advertisement

The Influence of Screen-Printing Parameters on Properties of Conductive Layers for Application in Biomedical Electrodes

  • L. KołodziejEmail author
  • S. Ostrowski
  • A. Maciejewski
  • M. Jakubowska
  • G. Wróblewski
Conference paper
  • 267 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1044)

Abstract

Screen printing is one of the best known and widely used techniques in printed electronics, with applications in biomedical devices. Several advantages of this technique include it’s robustness, versatility and good accuracy allow it to be used in the electronics industry. Advanced screen-printing machines require the specific selection of printing parameters, which have noticeable impact on the quality of printouts. In this paper, we present the results of squeegee firmness and screen density influence on the resistance of obtained printouts. The experiments were conducted using commercially available, thermally cured, conductive carbon and silver pastes which are commonly used to acquire conductive layers. Conductive traces of different lengths and widths were printed on an elastic polymer film. Printed samples were tested according to ANSI/AAMI EC12:2000/(R)2015 standard for disposable ECG electrodes.

Keywords

Screen printing Conductive pastes Printed electronics Biomedical electrode 

References

  1. 1.
    Fukuda, K., Someya, T.: Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv. Mater. (2016).  https://doi.org/10.1002/adma.201602736CrossRefGoogle Scholar
  2. 2.
    Zhou, Y., Tong, H., Liu, Y., Yuan, S., Yuan, X., Liu, C., Zhang, Y., Chen, G., Yang, Y.: Rheological effect on screen-printed morphology of thick film silver paste metallization. J. Mater. Sci. Mater. Electron. (2017).  https://doi.org/10.1007/s10854-016-6219-1Google Scholar
  3. 3.
    Hyun, W.J., Secor, E.B., Hersam, M.C., Frisbie, C.D., Francis, L.F.: High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. (2015).  https://doi.org/10.1002/adma.201404133CrossRefGoogle Scholar
  4. 4.
    Suikkola, J., Björninen, T., Mosallaei, M., Kankkunen, T., Iso-Ketola, P., Ukkonen, L., Vanhala, J., Mäntysalo, M.: Screen-printing fabrication and characterization of stretchable electronics. Sci. Rep. (2016).  https://doi.org/10.1038/srep25784
  5. 5.
    Fasolt, B., Hodgins, M., Rizzello, G., Seelecke, S.: Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer (DE) membranes. Sens. Actuators A: Phys. (2017).  https://doi.org/10.1016/j.sna.2017.08.028CrossRefGoogle Scholar
  6. 6.
    Ushijima, H., Kusaka, Y., Fujita, M., Nomura, K., Kanazawa, S., Horii, Y., Abe, K., Yamamoto, N. (eds.): Developments of high precision printing processes for fabricating the flexible electronics, 2017 International Conference on Electronics Packaging (ICEP) (2017)Google Scholar
  7. 7.
    Yu, Y.-Y., Chen, C.-H., Chueh, C.-C., Chiang, C.-Y., Hsieh, J.-H., Chen, C.-P., Chen, W.-C.: Intrinsically stretchable nanostructured silver electrodes for realizing efficient strain sensors and stretchable organic photovoltaics. ACS Appl. Mater. Interfaces (2017).  https://doi.org/10.1021/acsami.7b06963CrossRefGoogle Scholar
  8. 8.
    Yin, J., Kim, J., Lee, H.U., Park, J.Y.: Highly conductive and flexible thin film electrodes based on silver nanowires wrapped carbon fiber networks for supercapacitor applications. Thin Solid Films (2018).  https://doi.org/10.1016/j.tsf.2018.05.043CrossRefGoogle Scholar
  9. 9.
    Tybrandt, K., Khodagholy, D., Dielacher, B., Stauffer, F., Renz, A.F., Buzsáki, G., Vörös, J.: High-density stretchable electrode grids for chronic neural recording. Adv. Mater. (2018).  https://doi.org/10.1002/adma.201706520CrossRefGoogle Scholar
  10. 10.
    Corea, J.R., Flynn, A.M., Lechêne, B., Scott, G., Reed, G.D., Shin, P.J., Lustig, M., Arias, A.C.: Screen-printed flexible MRI receive coils. Nat. Commun. (2016).  https://doi.org/10.1038/ncomms10839
  11. 11.
    Hyun, W., Secor, E.B., Hersam, M.C., Frisbie, C., Francis, L.: High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. (2015).  https://doi.org/10.1002/adma.201404133CrossRefGoogle Scholar
  12. 12.
    Inzelberg, L., Hanein, Y.: Electrophysiology meets printed electronics. The beginning of a beautiful friendship. Front. Neurosci. (2019).  https://doi.org/10.3389/fnins.2018.00992

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • L. Kołodziej
    • 1
    Email author
  • S. Ostrowski
    • 1
  • A. Maciejewski
    • 2
  • M. Jakubowska
    • 1
  • G. Wróblewski
    • 1
  1. 1.Institute of Metrology and Biomedical EngineeringWarsaw University of TechnologyWarsawPoland
  2. 2.Poznan University of Medical SciencesPoznanPoland

Personalised recommendations