Skip to main content

Semi-automatic Spine Segmentation Method of CT Data

  • Conference paper
  • First Online:
Mechatronics 2019: Recent Advances Towards Industry 4.0 (MECHATRONICS 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1044))

Included in the following conference series:

  • 754 Accesses

Abstract

Computer Tomography modality perfectly visualizes hard tissues – cancellous and cortical bone. For purpose of spine segmentation CT data were chosen. Main goal of the presented work is to achieve independent sets of segmented vertebrae and intervertebral discs by minimum effort of manual user interaction. Additionally, vertebrae structures that are built with two bony tissues, should be segmented independently. To detect discs, volume between vertebral endplates is analyzed and then classified as a disc. The key points in the proposed algorithm is to prepare manual area correction of joints area and separation in intervertebral level and automation in seed detection for region growing method based on anatomical vertebra characteristic. Segmented data can be used for generating surface and volume meshes for custom spine models for Finite Element Modeling and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertagnoli, R.: Indications for total lumbar disc replacement. In: Kim, D.H., Cammisa Jr., F.P., Fessler, R.G. (eds.) Dynamic Reconstruction of the Spine, pp. 154–159. Thieme, New York (2006)

    Google Scholar 

  2. Negrini, S., Bonaiuti, D., Monticone, M., Trevisan, C.: Medical causes of low back pain. In: Slipman, C.W, Derby, R., Simeone, F.A., Mayer, T.G. (eds.) Interventional Spine: An Algorithmic Approach, pp. 803–811. Saunders Elsevier, Philadelphia (2008)

    Google Scholar 

  3. Schwier, M., Chitiboi, T., Hülnhagen, T., Hahn, H.K.: Automated spine and vertebrae detec-tion in CT images using object-based image analysis. J. Numer. Meth. Biomed. Eng. 29, 938–963 (2013)

    Article  Google Scholar 

  4. Herring, J.L., Dawant, B.M.: Automatic lumbar vertebral identification using surface-based registration. J. Biomed. Inform. 34(2), 74–84 (2001)

    Article  Google Scholar 

  5. Huang, S., Chu, Y., Lai, S., Novak, C.: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. IEEE Trans. Med. Imag. 28(10), 1595–1605 (2009)

    Article  Google Scholar 

  6. Schmidt, S., et al.: Spine detection and labeling using a parts-based graphical model. In: Proceedings of IPMI, pp. 122–133 (2007)

    Google Scholar 

  7. Kelm, M., et al.: Detection of 3D spinal geometry using iterated marginal space learning. In: Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging, pp. 96–105 (2010)

    Chapter  Google Scholar 

  8. Cai, Y., Osman, S., Sharma, M., Landis, M., Li, S.: Multi-modality vertebra recognition in arbitrary views using 3D deformable hierarchical model. IEEE Trans. Med. Imaging 34(8), 1676–1693 (2015)

    Article  Google Scholar 

  9. White III, A.A., Panjabi, M.M.: Clinical Biomechanics of the Spine. J.B. Lippincott Company, Philadelphia (1978)

    Google Scholar 

  10. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15, 29 (2015)

    Article  Google Scholar 

  11. Smolik, W.: Tomografia rentgenowska. Biuletyn Wojskowej Akademii Technicznej 4, s. 63–91 (2000)

    Google Scholar 

  12. Schnitzlein, H.N., Murtagh, F.R.: Imaging Anatomy of the Head and Spine, Maryland (1985)

    Google Scholar 

  13. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  14. Tadeusiewicz, R., Korohoda, P.: Komputerowa analiza i przetwarznie obrazow, Wydawnic-two Fundacji Postepu Telekomunikacji Krakow (1997)

    Google Scholar 

  15. Yiebin, K., Dongsung, K.: A fully automatic vertebra segmentation method using 3D de-formable fences. Comput. Med. Imaging Graph. 33, 343–352 (2009)

    Article  Google Scholar 

  16. Janssens, R., Zeng, G., Zheng G.: Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3D fully convolutional networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Malgorzata Mateusiak or Krzysztof Mikolajczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mateusiak, M., Mikolajczyk, K. (2020). Semi-automatic Spine Segmentation Method of CT Data. In: Szewczyk, R., Krejsa, J., Nowicki, M., Ostaszewska-Liżewska, A. (eds) Mechatronics 2019: Recent Advances Towards Industry 4.0. MECHATRONICS 2019. Advances in Intelligent Systems and Computing, vol 1044. Springer, Cham. https://doi.org/10.1007/978-3-030-29993-4_4

Download citation

Publish with us

Policies and ethics