Skip to main content

Investigating How Microstructural Features Influence Stress Intensities in Pitting Corrosion

  • Conference paper
  • First Online:
Challenges in Mechanics of Time Dependent Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 2

Abstract

Despite the many advances made in material science, stainless steel and aluminum remain the structural materials best-suited for the naval fleet. While these metallic materials offer many benefits, such as high strength and good toughness, their persistent exposure to the maritime environment inevitably leads to issues with corrosion. Among the various manifestations of corrosion, pitting corrosion is of particular concern because the transition of corrosion pits to stress-corrosion cracks can lead to catastrophic failures. Traditional pitting corrosion analyses treat the pit shape as a semi-circle or ellipse and typically assume a growth pattern that maintains the original geometrical shape. However, when the underlying microstructure is incorporated into the model, pit growth is related to the grains surrounding the pit perimeter and the growth rate is proportional to crystallographic orientation. Since each grain has a potentially different orientation, pit growth happens at non-uniform rates leading to irregular geometries, i.e., non-circular and non-elliptical. These irregular pit geometries can further lead to higher stresses.

This work presents a detailed look at corrosion pit growth coupled with mechanical load through a numerical model of a two-dimensional stable corrosion pit. Real microstructural information from a sample of 316 stainless steel is incorporated into the model to analyze microstructural effects on pit growth. Through this work, stress distributions and stress intensity factors are examined for a variety of pit geometries, including comparisons of their range of values to a typical, semi-circular pit. The consequences of these stress distributions and concentration factors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.M. Sharland, C.P. Jackson, A.J. Diver, A finite-element model of the propagation of corrosion crevices and pits. Corros. Sci. 29(9), 1149–1166 (1989)

    Article  Google Scholar 

  2. G.S. Frankel, Pitting corrosion of metals: a review of the critical factors. J. Electrochem. Soc. 145(6), 2186–2198 (1998)

    Article  Google Scholar 

  3. J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, R. Ojeda, Modelling of pitting corrosion in marine and offshore steel structures – a technical review. J. Loss Prev. Process Ind. 37, 39–62 (2015)

    Article  Google Scholar 

  4. G.S. Chen, K.C. Wan, M. Gao, R.P. Wei, T.H. Flournoy, Transition from pitting to fatigue crack growth - modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy. Mater. Sci. Eng. A 219(1–2), 126–132 (1996)

    Article  Google Scholar 

  5. B.J. Connolly, D.A. Homer, S.J. Fox, A.J. Davenport, C. Padovani, S. Zhou, A. Turnbull, M. Preuss, N.P. Stevens, T.J. Marrow, J.Y. Buffiere, E. Boller, A. Groso, M. Stampanoni, X-ray microtomography studies of localised corrosion and transitions to stress corrosion cracking. Mater. Sci. Technol. 22(9), 1076–1085 (2006)

    Article  Google Scholar 

  6. K.S. Siow, T.Y. Song, J.H. Qiu, Pitting corrosion of duplex stainless steels. Anti-Corros.Methods Mater. 48(1), 31–36 (2001)

    Article  Google Scholar 

  7. P.M. Natishan, W.E. O’Grady, Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: a review. J. Electrochem. Soc. 161(9), C421–C432 (2014)

    Article  Google Scholar 

  8. Y.S. Lim, J.S. Kim, S.J. Ahn, H.S. Kvvon, Y. Katada, The influences of microstructure and nitrogen alloying on pitting corrosion of type 316L and 20 wt.% Mn-substituted type 316L stainless steels. Corros. Sci. 43(1), 53–68 (2001)

    Google Scholar 

  9. A. Di Schino, J.M. Kenny, Effect of grain size on the corrosion resistance of a high nitrogen-low nickel austenitic stainless steel. J. Mater. Sci. Lett. 21(24), 1969–1971 (2002)

    Article  Google Scholar 

  10. Z. Cvijović, G. Radenković, Microstructure and pitting corrosion resistance of annealed duplex stainless steel. Corros. Sci. 48(12), 3887–3906 (2006)

    Article  Google Scholar 

  11. A.S. Hamada, L.P. Karjalainen, M.C. Somani, Electrochemical corrosion behaviour of a novel submicron-grained austenitic stainless steel in an acidic NACL solution. Mater. Sci. Eng. A 431(1–2), 211–217 (2006)

    Article  Google Scholar 

  12. J. Guo, S. Yang, C. Shang, Y. Wang, X. He, Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl− containing environment. Corros. Sci. 51(2):242–251 (2009)

    Article  Google Scholar 

  13. A. Shahryari, J.A. Szpunar, S. Omanovic, The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior. Corros. Sci. 51(3), 677–682 (2009)

    Article  Google Scholar 

  14. N.J. Laycock, S.P. White, Computer simulation of single pit propagation in stainless steel under potentiostatic control. J. Electrochem. Soc. 148(7), B264–B275 (2001)

    Article  Google Scholar 

  15. S. Scheiner, C. Hellmich, Finite volume model for diffusion- and activation-controlled pitting corrosion of stainless steel. Comput. Methods Appl. Mech. Eng. 198(37–40), 2898–2910 (2009).

    Article  Google Scholar 

  16. A.S. Vagbharathi, S., Gopalakrishnan, An extended finite-element model coupled with level set method for analysis of growth of corrosion pits in metallic structures. Proc. R. Soc. A: Math. Phys. Eng. Sci. 470(2168), 20140001 (2014)

    Article  Google Scholar 

  17. M.R. Wenman, K.R. Trethewey, S.E. Jarman, P.R. Chard-Tuckey, A finite-element computational model of chloride-induced transgranular stress-corrosion cracking of austenitic stainless steel. Acta Mater. 56(16), 4125–4136 (2008)

    Article  Google Scholar 

  18. P.T. Brewick, N. Kota, A.C. Lewis, V.G. DeGiorgi, A.B. Geltmacher, S.M. Qidwai, Microstructure-sensitive modeling of pitting corrosion: effect of the crystallographic orientation. Corros. Sci. 129, 54–69 (2017)

    Article  Google Scholar 

  19. D.J. Rowenhorst, A. Gupta, C.R. Feng, G. Spanos, 3D crystallographic and morphological analysis of coarse martensite: combining EBSD and serial sectioning. Scr. Mater. 55(1), 11–16 (2006)

    Article  Google Scholar 

  20. G. Spanos, A.B. Geltmacher, A.C. Lewis, J.F. Bingert, M. Mehl, D. Papaconstantopoulos, Y. Mishin, A. Gupta, P. Matic, 0. Mater. Sci. Eng. A 452–453, 558–568 (2007)

    Google Scholar 

  21. S. Scheiner, C. Hellmich, Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary. Corros. Sci. 49(2), 319–346 (2007)

    Article  Google Scholar 

  22. H.M. Ledbetter, Predicted single-crystal elastic constants of stainless-steel 316. Br. J. Non-Destructive Test. 23, 286–287 (1981)

    Google Scholar 

  23. A. Teklu, H. Ledbetter, S. Kim, L.A. Boatner, M. McGuire, V. Keppens, Single-crystal elastic constants of Fe-15Ni-15Cr alloy. Metall. Mater. Trans. A 35(10), 3149–3154 (2004)

    Article  Google Scholar 

  24. S. Chaudhari, S.R., Sainkar, P.P. Patil, Poly(o-ethylaniline) coatings for stainless steel protection. Prog. Org. Coat. 58(1), 54–63 (2007)

    Article  Google Scholar 

  25. M. Yasuda, F. Weinberg, D. Tromans, Pitting corrosion of Al and Al-Cu single crystals. J. Electrochem. Soc. 137(12), 3708–3715 (1990)

    Article  Google Scholar 

  26. M. Moesen, L. Cardoso, S.C. Cowin, A symmetry invariant formulation of the relationship between the elasticity tensor and the fabric tensor. Mech. Mater. Int. J. 54, 70–83, 11 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Brewick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brewick, P., Geltmacher, A. (2020). Investigating How Microstructural Features Influence Stress Intensities in Pitting Corrosion. In: Silberstein, M., Amirkhizi, A., Shuman, X., Beese, A., Berke, R., Pataky, G. (eds) Challenges in Mechanics of Time Dependent Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-29986-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29986-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29985-9

  • Online ISBN: 978-3-030-29986-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics