Skip to main content

Failed OCL Talus/Revision OLT

  • Chapter
  • First Online:
Revision Surgery of the Foot and Ankle

Abstract

Osteochondral lesions of the talus (OLT) represent 4% of cartilage lesions in the body. These lesions often require multiple surgeries to improve patient’s quality of life. The etiology of the OLTs is still being elucidated, with known causes such as acute trauma, ankle sprains or fractures, repetitive stress, local ischemia, and even genetic causes with identical lesions found in twins. The pathogenesis can involve direct trauma to the talar articular cartilage which can lead to subchondral edema and eventually cystic changes. The other mechanism in cases of non-traumatic OLTs involves subchondral bone injury or avascular event which precipitates softening of the overlying cartilage and eventual separation of the fragment. These defects continue to challenge surgeons treating patients with this pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander A, Lichtman D. Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans). Long-term follow-up. J Bone Joint Surg Am. 1980;62(4):646–52.

    Article  CAS  PubMed  Google Scholar 

  2. O’loughlin PF, Heyworth BE, Kennedy JG. Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med. 2010;38(2):392–404.

    Article  PubMed  Google Scholar 

  3. Zengerink M, Struijs PA, Tol JL, van Dijk CN. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2010;18:238–46.

    Article  PubMed  Google Scholar 

  4. Tol JL, Struijs PAA, Bossuyt PMM, Verhagen RAW, Van Dijk CN. Treatment strategies in osteochondral defects of the talar dome: a systematic review. Foot Ankle Int. 2000;21(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  5. VanNini F, CaVallO M, BalDaSSarrI M, CaStagnini F, Olivieri A, Ferranti E, et al. Treatment of juvenile osteochondritis dissecans of the talus: current concepts review. Joints. 2014;2(4):188.

    PubMed  Google Scholar 

  6. Hammett RB, Saxby TS. Osteochondral lesion of the talus in homozygous twins—the question of heredity. Foot Ankle Surg. 2010;16(3):e55–6.

    Article  PubMed  Google Scholar 

  7. Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41(6):988–1020.

    Article  PubMed  Google Scholar 

  8. van Eekeren IC, Reilingh ML, van Dijk CN. Rehabilitation and return-to-sports activity after debridement and bone marrow stimulation of osteochondral talar defects. Sports Med. 2012;42:857–70.

    PubMed  Google Scholar 

  9. Pinsker E, Inrig T, Daniels TR, Warmington K, Beaton DE. Symptom resolution and patient-perceived recovery following ankle arthroplasty and arthrodesis. Foot Ankle Int. 2016;37:1269–76.

    Article  PubMed  Google Scholar 

  10. van Eekeren IC, van Bergen CJ, Sierevelt IN, Reilingh ML, van Dijk CN. Return to sports after arthroscopic debridement and bone marrow stimulation of osteochondral talar defects: a 5- to 24-year follow-up study. Knee Surg Sports Traumatol Arthrosc. 2016;24:1311–5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Paul J, Sagstetter M, Lammle L, et al. Sports activity after osteochondral transplantation of the talus. Am J Sports Med. 2012;40:870–4.

    Article  PubMed  Google Scholar 

  12. Vannini F, Cavallo M, Ramponi L, et al. Return to sports after bone marrow-derived cell transplantation for osteochondral lesions of the talus. Cartilage. 2017;8:80–7.

    Article  PubMed  Google Scholar 

  13. Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, et al. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008;36(9):1750–62.

    Article  PubMed  Google Scholar 

  14. Ahmad J, Maltenfort M. Arthroscopic treatment of osteochondral lesions of the talus with allograft cartilage matrix. Foot Ankle Int. 2017;38(8):855–62.

    Article  PubMed  Google Scholar 

  15. Murawski CD, Foo LF, Kennedy JG. A review of arthroscopic bone marrow stimulation techniques of the talus: the good, the bad, and the causes for concern. Cole BJ, Kercher JS, editors. Cartilage. 2010;1(2):137–44.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tang QO, Shakib K, Heliotis M, Tsiridis E, Mantalaris A, Ripamonti U, et al. TGF-β3: a potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther. 2009;9(6):689–701.

    Article  CAS  PubMed  Google Scholar 

  17. Smyth NA. Establishing proof of concept: platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus. World J Orthop. 2012;3(7):101.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim YS, Park EH, Kim YC, Koh YG, Lee JW. Factors associated with the clinical outcomes of the osteochondral autograft transfer system in osteochondral lesions of the talus. Am J Sports Med. 2012;40(12):2709–19.

    Article  PubMed  Google Scholar 

  19. Verhagen RAW, Maas M, Dijkgraaf MGW, Tol JL, Krips R, van Dijk CN. Prospective study on diagnostic strategies in osteochondral lesions of the talus. J Bone Joint Surg Br. 2005;87(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  20. Lee M, Kwon JW, Choi WJ, Lee JW. Comparison of outcomes for osteochondral lesions of the talus with and without chronic lateral ankle instability. Foot Ankle Int. 2015;36(9):1050–7.

    Article  PubMed  Google Scholar 

  21. Buda R, Vannini F, Castagnini F, Cavallo M, Ruffilli A, Ramponi L, et al. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop. 2015;39(5):893–900.

    Article  PubMed  Google Scholar 

  22. Sijbrandij ES, van Gils AP, Louwerens JW, de Lange EE. Posttraumatic subchondral bone contusions and fractures of the talotibial joint: occurrence of “kissing” lesions. AJR Am J Roentgenol. 2000;175(6):1707–10.

    Article  CAS  PubMed  Google Scholar 

  23. Choi WJ, Park KK, Kim BS, Lee JW. Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med. 2009;37:1974–80.

    Article  PubMed  Google Scholar 

  24. Cuttica DJ, Smith WB, Hyer CF, Philbin TM, Berlet GC. Osteochondral lesions of the talus: predictors of clinical outcome. Foot Ankle Int. 2011;32:1045–51.

    Article  PubMed  Google Scholar 

  25. Lee K-B, Bai L-B, Yoon T-R, Jung S-T, Seon J-K. Second-look arthroscopic findings and clinical outcomes after microfracture for osteochondral lesions of the talus. Am J Sports Med. 2009;37(1_suppl):63S–70S.

    Article  PubMed  Google Scholar 

  26. Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop. 2004;422:214–23.

    Article  Google Scholar 

  27. van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJ. Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosc. 2010;18:570–80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Scranton PEJ, Frey CC, Feder KS. Outcome of osteochondral autograft transplantation for type-V cystic osteochondral lesions of the talus. J Bone Joint Surg Br. 2006;88:614–9.

    Article  PubMed  Google Scholar 

  29. Saltzman BM, Lin J, Lee S. Particulated juvenile articular cartilage allograft transplantation for osteochondral talar lesions. Cartilage. 2017;8:61–72.

    Article  PubMed  Google Scholar 

  30. Coetzee JC, Giza E, Schon LC, et al. Treatment of osteochondral lesions of the talus with particulated juvenile cartilage. Foot Ankle Int. 2013;34:1205–11.

    Article  PubMed  Google Scholar 

  31. Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy. 2008;24:106–12.

    Article  PubMed  Google Scholar 

  32. Kennedy JG, Murawski CD. The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique. Cartilage. 2011;2:327–36.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ramponi L, Yasui Y, Murawski CD, et al. Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review. Am J Sports Med. 2017;45(7):1698–705.

    Article  PubMed  Google Scholar 

  34. Flynn S, Ross KA, Hannon CP, et al. Autologous osteochondral transplantation for osteochondral lesions of the talus. Foot Ankle Int. 2016;37:363–72.

    Article  PubMed  Google Scholar 

  35. Fraser EJ, Harris MC, Prado MP, Kennedy JG. Autologous osteochondral transplantation for osteochondral lesions of the talus in an athletic population. Knee Surg Sports Traumatol Arthrosc. 2016;24:1272–9.

    Article  PubMed  Google Scholar 

  36. Hangody L, Dobos J, Balo E, Panics G, Hangody LR, Berkes I. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med. 2010;38:1125–33.

    Article  PubMed  Google Scholar 

  37. Fansa AM, Murawski CD, Imhauser CW, Nguyen JT, Kennedy JG. Autologous osteochondral transplantation of the talus partially restores contact mechanics of the ankle joint. Am J Sports Med. 2011;39:2457–65.

    Article  PubMed  Google Scholar 

  38. Henak CR, Ross KA, Bonnevie ED, et al. Human talar and femoral cartilage have distinct mechanical properties near the articular surface. J Biomech. 2016;49:3320–7.

    Article  PubMed  Google Scholar 

  39. Lamb J, Murawski CD, Deyer TW, Kennedy JG. Chevron-type medial malleolar osteotomy: a functional, radiographic and quantitative T2-mapping MRI analysis. Knee Surg Sports Traumatol Arthrosc. 2013;21:1283–8.

    Article  PubMed  Google Scholar 

  40. Valderrabano V, Leumann A, Rasch H, Egelhof T, Hintermann B, Pagenstert G. Knee-to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint. Am J Sports Med. 2009;37:105S–11S.

    Article  PubMed  Google Scholar 

  41. Savage-Elliott I, Smyth NA, Deyer TW, et al. Magnetic resonance imaging evidence of postoperative cyst formation does not appear to affect clinical outcomes after autologous osteochondral transplantation of the talus. Arthroscopy. 2016;32:1846–54.

    Article  PubMed  Google Scholar 

  42. Ross AW, Murawski CD, Fraser EJ, et al. Autologous osteochondral transplantation for osteochondral lesions of the talus: does previous bone marrow stimulation negatively affect clinical outcome? Arthroscopy. 2016;32:1377–83.

    Article  PubMed  Google Scholar 

  43. Chubinskaya S, Huch K, Mikecz K, et al. Chondrocyte matrix metalloproteinase-8: up-regulation of neutrophil collagenase by interleukin-1 beta in human cartilage from knee and ankle joints. Lab Investig. 1996;74:232–40.

    CAS  PubMed  Google Scholar 

  44. Reddy S, Pedowitz DI, Parekh SG, Sennett BJ, Okereke E. The morbidity associated with osteochondral harvest from asymptomatic knees for the treatment of osteochondral lesions of the talus. Am J Sports Med. 2007;35:80–5.

    Article  PubMed  Google Scholar 

  45. LaPrade RF, Botker JC. Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy. 2004;20:e69–73.

    Article  PubMed  Google Scholar 

  46. Fraser EJ, Savage-Elliott I, Yasui Y, et al. Clinical and MRI donor site outcomes following autologous osteochondral transplantation for talar osteochondral lesions. Foot Ankle Int. 2016;37:968–76.

    Article  PubMed  Google Scholar 

  47. Guney A, Akar M, Karaman I, Oner M, Guney B. Clinical outcomes of platelet rich plasma (PRP) as an adjunct to microfracture surgery in osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2015;23:2384–9.

    Article  PubMed  Google Scholar 

  48. Gormeli G, Karakaplan M, Gormeli CA, Sarikaya B, Elmali N, Ersoy Y. Clinical effects of platelet-rich plasma and hyaluronic acid as an additional therapy for talar osteochondral lesions treated with microfracture surgery: a prospective randomized clinical trial. Foot Ankle Int. 2015;36:891–900.

    Article  PubMed  Google Scholar 

  49. Jazzo SF, Scribner D, Shay S, Kim KM. Patient-reported outcomes following platelet-rich plasma injections in treating osteochondral lesions of the talus: a critically appraised topic. J Sport Rehabil. 2018;27(2):177–84.

    Article  PubMed  Google Scholar 

  50. Buda R, Vannini F, Cavallo M, et al. One-step bone marrow-derived cell transplantation in talarosteochondral lesions: mid-term results. Joints. 2013;1:102–7.

    Article  PubMed  Google Scholar 

  51. Chahla J, Cinque ME, Shon JM, et al. Bone marrow aspirate concentrate for the treatment of osteochondral lesions of the talus: a systematic review of outcomes. J Exp Orthop. 2016;3:33.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Desando G, Bartolotti I, Vannini F, et al. Repair potential of matrix-induced bone marrow aspirate concentrate and matrix-induced autologous chondrocyte implantation for talar osteochondral repair: patterns of some catabolic, inflammatory, and pain mediators. Cartilage. 2017;8:50–60.

    Article  PubMed  Google Scholar 

  53. Abrams GD, Alentorn-Geli E, Harris JD, Cole BJ. Treatment of a lateral tibial plateau osteochondritis dissecans lesion with subchondral injection of calcium phosphate. Arthrosc Tech. 2013;2:e271–4.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cohen SB, Sharkey PF. Subchondroplasty for treating bone marrow lesions. J Knee Surg. 2016;29:555–63.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boukhemis, K., Giza, E., Kreulen, C.D. (2020). Failed OCL Talus/Revision OLT. In: Berkowitz, M., Clare, M., Fortin, P., Schon, L., Sanders, R. (eds) Revision Surgery of the Foot and Ankle. Springer, Cham. https://doi.org/10.1007/978-3-030-29969-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29969-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29968-2

  • Online ISBN: 978-3-030-29969-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics