Advertisement

Breakdown Resilience of Key Exchange Protocols: NewHope, TLS 1.3, and Hybrids

  • Jacqueline BrendelEmail author
  • Marc Fischlin
  • Felix Günther
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11736)

Abstract

Broken cryptographic algorithms and hardness assumptions are a constant threat to real-world protocols. Prominent examples are hash functions for which collisions become known, or number-theoretic assumptions which are threatened by advances in quantum computing. Especially when it comes to key exchange protocols, the switch to quantum-resistant primitives has begun and aims to protect today’s secrets against future developments, moving from common Diffie–Hellman-based solutions to Learning-With-Errors-based approaches, often via intermediate hybrid designs.

To this date there exists no security notion for key exchange protocols that could capture the scenario of breakdowns of arbitrary cryptographic primitives to argue security of prior or even ongoing and future sessions. In this work we extend the common Bellare–Rogaway model to capture breakdown resilience of key exchange protocols. Our extended model allows us to study security of a protocol even in case of unexpected failure of employed primitives, may it be number-theoretic assumptions, hash functions, signature schemes, key derivation functions, etc. We then apply our security model to analyze two real-world protocols, showing that breakdown resilience for certain primitives is achieved by both an authenticated variant of the post-quantum secure key encapsulation mechanism \(\textsc {NewHope} \) (Alkim et al.) which is a second round candidate in the Post Quantum Cryptography standardization process by NIST, as well as by TLS 1.3, which has recently been standardized as RFC 8446 by the Internet Engineering Task Force.

Notes

Acknowledgments

Felix Günther is supported in part by Research Fellowship grant GU 1859/1-1 of the DFG and National Science Foundation (NSF) grants CNS-1526801 and CNS-1717640. This work has been co-funded by the DFG as part of project S4 within the CRC 1119 CROSSING and as part of project D.2 within the RTG 2050 “Privacy and Trust for Mobile Users.”

Supplementary material

References

  1. 1.
    Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice. In: ACM CCS 2015, pp. 5–17 (2015)Google Scholar
  2. 2.
    AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.: On the security of RC4 in TLS. In: USENIX Security 2013, pp. 305–320 (2013)Google Scholar
  3. 3.
    Alkim, E., et al.: NewHope: algorithm specifications and supporting documentation (2019). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NewHope-Round2.zip. Accessed 24 Apr 2019
  4. 4.
    Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconciliation. Cryptology ePrint Archive, Report 2016/1157 (2016). http://eprint.iacr.org/2016/1157
  5. 5.
    Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: USENIX Security 2016, pp. 327–343 (2016)Google Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48329-2_21CrossRefGoogle Scholar
  7. 7.
    Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference implementations for the TLS 1.3 standard candidate. In: 2017 IEEE Symposium on Security and Privacy, pp. 483–502 (2017)Google Scholar
  8. 8.
    Bhargavan, K., Brzuska, C., Fournet, C., Green, M., Kohlweiss, M., Zanella-Béguelin, S.: Downgrade resilience in key-exchange protocols. In: 2016 IEEE Symposium on Security and Privacy, pp. 506–525 (2016)Google Scholar
  9. 9.
    Bhargavan, K., Leurent, G.: Transcript collision attacks: breaking authentication in TLS, IKE and SSH. In: NDSS 2016 (2016)Google Scholar
  10. 10.
    Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encapsulation mechanisms and authenticated key exchange. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 206–226. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-25510-7_12CrossRefGoogle Scholar
  11. 11.
    Bos, J.W., et al.: Frodo: take off the ring! Practical, quantum-secure key exchange from LWE. In: ACM CCS 2016, pp. 1006–1018 (2016)Google Scholar
  12. 12.
    Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy, pp. 553–570 (2015)Google Scholar
  13. 13.
    Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: IEEE EuroS&P 2018, pp. 353–367 (2018)Google Scholar
  14. 14.
    Braithwaite, M.: Google security blog: experimenting with post-quantum cryptography (2016). https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html. Accessed 24 Apr 2019
  15. 15.
    Brendel, J., Fischlin, M., Günther, F.: Breakdown resilience of key exchange protocols: NewHope, TLS 1.3, and hybrids. Cryptology ePrint Archive, Report 2017/1252 (2019). https://eprint.iacr.org/2017/1252
  16. 16.
    Brzuska, C.: On the foundations of key exchange. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany (2013). http://tuprints.ulb.tu-darmstadt.de/3414/
  17. 17.
    Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-Rogaway key exchange protocols. In: ACM CCS 2011, pp. 51–62 (2011)Google Scholar
  18. 18.
    Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_28CrossRefGoogle Scholar
  19. 19.
    Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In: IEEE CSF 2016, pp. 164–178 (2016)Google Scholar
  20. 20.
    Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehensive symbolic analysis of TLS 1.3. In: ACM CCS 2017, pp. 1773–1788 (2017)Google Scholar
  21. 21.
    Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In: 2016 IEEE Symposium on Security and Privacy, pp. 470–485 (2016)Google Scholar
  22. 22.
    den Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48285-7_26CrossRefGoogle Scholar
  23. 23.
    Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Des. Codes Cryptogr. 2(2), 107–125 (1992)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 handshake protocol candidates. In: ACM CCS 2015, pp. 1197–1210 (2015)Google Scholar
  25. 25.
    Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint Archive, Report 2016/081 (2016). http://eprint.iacr.org/2016/081
  26. 26.
    Dowling, B., Stebila, D.: Modelling ciphersuite and version negotiation in the TLS protocol. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 270–288. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19962-7_16CrossRefzbMATHGoogle Scholar
  27. 27.
    Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC protocol. In: ACM CCS 2014, pp. 1193–1204 (2014)Google Scholar
  28. 28.
    Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: the case of the TLS 1.3 handshake candidates. In: IEEE EuroS&P 2017, pp. 60–75 (2017)Google Scholar
  29. 29.
    Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key exchange: a formal treatment and implications for TLS 1.3. In: 2016 IEEE Symposium on Security and Privacy, pp. 452–469 (2016)Google Scholar
  30. 30.
    Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 190–218. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76578-5_7CrossRefGoogle Scholar
  31. 31.
    Giechaskiel, I., Cremers, C., Rasmussen, K.B.: On bitcoin security in the presence of broken cryptographic primitives. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 201–222. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45741-3_11CrossRefGoogle Scholar
  32. 32.
    Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-46885-4_5CrossRefGoogle Scholar
  33. 33.
    Gupta, S.S., Maitra, S., Paul, G., Sarkar, S.: (Non-)random sequences from (non-)random permutations - analysis of RC4 stream cipher. J. Cryptol. 27(1), 67–108 (2014)CrossRefGoogle Scholar
  34. 34.
    Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_17CrossRefzbMATHGoogle Scholar
  35. 35.
    Krawczyk, H.: A unilateral-to-mutual authentication compiler for key exchange (with applications to client authentication in TLS 1.3). In: ACM CCS 2016, pp. 1438–1450 (2016)Google Scholar
  36. 36.
    LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75670-5_1CrossRefzbMATHGoogle Scholar
  37. 37.
    Langley, A.: ImperialViolet: CECPQ2 (2018). https://www.imperialviolet.org/2018/12/12/cecpq2.html. Accessed 24 Apr 2019
  38. 38.
    Li, X., Xu, J., Zhang, Z., Feng, D., Hu, H.: Multiple handshakes security of TLS 1.3 candidates. In: 2016 IEEE Symposium on Security and Privacy, pp. 486–505 (2016)Google Scholar
  39. 39.
    NIST: Post-quantum cryptography standardization (2017). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization. Accessed 24 Apr 2019
  40. 40.
    Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of TLS. In: Chen, L., McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 160–186. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49100-4_7CrossRefGoogle Scholar
  41. 41.
    Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (2018)Google Scholar
  42. 42.
    Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision analysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 245–261. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_15CrossRefGoogle Scholar
  43. 43.
    Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first collision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 570–596. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_19CrossRefGoogle Scholar
  44. 44.
    Stevens, M., Karpman, P., Peyrin, T.: Freestart collision for full SHA-1. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 459–483. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_18CrossRefGoogle Scholar
  45. 45.
    Stevens, M., Lenstra, A., de Weger, B.: Chosen-prefix collisions for MD5 and colliding X.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_1CrossRefGoogle Scholar
  46. 46.
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_2CrossRefGoogle Scholar
  47. 47.
    Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jacqueline Brendel
    • 1
    Email author
  • Marc Fischlin
    • 1
  • Felix Günther
    • 2
  1. 1.CryptoplexityTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of Computer Science and EngineeringUniversity of California San DiegoLa JollaUSA

Personalised recommendations