Caton, R.: The electric currents of the brain. Am. J. EEG Technol. 10(1), 12–14 (1970)
CrossRef
Google Scholar
Llinás, R.R.: Intrinsic electrical properties of mammalian neurons and cns function: a historical perspective. Front. Cell. Neurosci. 8, 320 (2014)
CrossRef
Google Scholar
Bird, J.J., Manso, L.J., Ribiero, E.P., Ekart, A., Faria, D.R.: A study on mental state classification using EEG-based brain-machine interface. In: 9th International Conference on Intelligent Systems, IEEE (2018)
Google Scholar
Bird, J.J., Ekart, A., Buckingham, C.D., Faria, D.R.: Mental emotional sentiment classification with an EEG-based brain-machine interface. In: The International Conference on Digital Image and Signal Processing (DISP 2019). Springer, (2019)
Google Scholar
Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)
CrossRef
Google Scholar
Tripathi, S., Acharya, S., Sharma, R.D., Mittal, S., Bhattacharya, S.: Using deep and convolutional neural networks for accurate emotion classification on deap dataset. In: Twenty-Ninth IAAI Conference (2017)
Google Scholar
Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., LaMantia, A., McNamara, J., Williams, S.: Neuroscience. Sinauer Associates, Sunderland (2004)
Google Scholar
Britton, J.W., Frey, L.C., Hopp, J., Korb, P., Koubeissi, M., Lievens, W., Pestana-Knight, E., St, E.L.: Electroencephalography (EEG): An introductory text and atlas of normal and abnormal findings in adults, children, and infants. American Epilepsy Society, Chicago (2016)
Google Scholar
Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents–EEG, ECOG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407 (2012)
CrossRef
Google Scholar
Cohen, M.X.: Analyzing Neural Time Series Data: Theory and Practice. MIT press, Cambridge (2014)
CrossRef
Google Scholar
Picard, R.W.: Affective Computing. MIT press, Cambridge (2000)
Google Scholar
Pantic, M., Rothkrantz, L.J.: Toward an affect-sensitive multimodal human-computer interaction. Proc. IEEE 91(9), 1370–1390 (2003)
CrossRef
Google Scholar
Rouast, P.V., Adam, M., Chiong, R.: Deep learning for human affect recognition: insights and new developments. In: IEEE Transactions on Affective Computing (2019)
Google Scholar
Abujelala, M., Abellanoza, C., Sharma, A., Makedon, F.: Brain-EE: Brain enjoyment evaluation using commercial EEG headband. In: Proceedings of the 9th ACM International Conference on Pervasive Technologies Related to Assistive Environments, p. 33. ACM (2016)
Google Scholar
Abhang, P.A., Gawali, B.W.: Correlation of EEG images and speech signals for emotion analysis. Br. J. Appl. Sci. Technol. 10(5), 1–13 (2015)
CrossRef
Google Scholar
Gevins, A., Smith, M.E., McEvoy, L., Yu, D.: High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral cortex (New York, NY: 1991), vol. 7, no. 4, pp. 374–385 (1997)
Google Scholar
Zhang, X., Wu, D.: On the vulnerability of cnn classifiers in EEG-based BCIS. IEEE Trans. Neural Syst. Rehabil. Eng. 27(5), 814–825 (2019)
CrossRef
Google Scholar
Wang, X., Magno, M., Cavigelli, L., Mahmud, M., Cecchetto, C., Vassanelli, S., Benini, L.: Embedded classification of local field potentials recorded from rat barrel cortex with implanted multi-electrode array. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2018)
Google Scholar
Wang, X., Magno, M., Cavigelli, L., Mahmud, M., Cecchetto, C., Vassanelli, S., Benini, L.: Rat cortical layers classification extracting evoked local field potential images with implanted multi-electrode sensor. In: 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6, IEEE (2018)
Google Scholar
Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)
MathSciNet
CrossRef
Google Scholar
Tan, P.-N.: Introduction to Data Mining. Pearson Education India, Chennai (2018)
Google Scholar
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org
MATH
Google Scholar
Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall, London (2000)
MATH
Google Scholar
Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers. John Wiley & Sons, New Jersey (2010)
MATH
Google Scholar
Strang, G.: Linear Algebra and its Applications. Brooks Cole, California (2006)
MATH
Google Scholar
Chiu, T.Y., Leonard, T., Tsui, K.-W.: The matrix-logarithmic covariance model. J. Am. Stat. Assoc. 91(433), 198–210 (1996)
MathSciNet
CrossRef
Google Scholar
Van Loan, C.: Computational frameworks for the fast Fourier transform, vol. 10, Siam (1992)
Google Scholar
LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)
Google Scholar
Oppenheim, A.V., Willsky, A.S., Nawab, S.: Signals and Systems. Prentice Hall, New Jersey (1996)
Google Scholar
Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649 (2012)
Google Scholar
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
MathSciNet
CrossRef
Google Scholar
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Google Scholar
Chollet, F., et al.: Keras. https://keras.io (2015)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv e-prints, p. arXiv:1412.6980, Dec 2014
Google Scholar
Bird, J.J., Faria, D.R., Manso, L.J., Ekart, A., Buckingham, C.D.: A deep evolutionary approach to bioinspired classifier optimisation for brain-machine interaction. Complexity 2019, 14 (2019)
CrossRef
Google Scholar
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, IJCAI 1995, pp. 1137–1143 (1995)
Google Scholar
López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)
MathSciNet
CrossRef
Google Scholar
Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
CrossRef
Google Scholar
Martín, A., Lara-Cabrera, R., Fuentes-Hurtado, F., Naranjo, V., Camacho, D.: Evodeep: a new evolutionary approach for automatic deep neural networks parametrisation. J. Parallel Distrib. Comput. 117, 180–191 (2018)
CrossRef
Google Scholar
Assunçao, F., Lourenço, N., Machado, P., Ribeiro, B.: Denser: deep evolutionary network structured representation. arXiv preprint arXiv:1801.01563 (2018)
Bird, J.J., Ekart, A., Faria, D.R.: Evolutionary optimisation of fully connected artificial neural network topology. In: SAI Computing Conference 2019, SAI (2019)
Google Scholar
Montgomery, D.C.: Design and Analysis of Experiments, 8th edn. John Wiley & Sons, New Jersey (2012)
Google Scholar
Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)
CrossRef
Google Scholar