Skip to main content

Fuzzy Control of Uncertain Nonlinear Systems with Numerical Techniques: A Survey

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1043))

Included in the following conference series:

Abstract

This paper provides an overview of numerical methods in order to solve fuzzy equations (FEs). It focuses on different numerical methodologies to solve FEs, dual fuzzy equations (DFEs), fuzzy differential equations (FDEs) and partial fuzzy differential equations (PFDEs). The solutions which are produced by these equations are taken to be the controllers. This paper also analyzes the existence of the roots of FEs and some important implementation problems. Finally, several examples are reviewed with different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jafari, R., Yu, W.: Uncertainty nonlinear systems control with fuzzy equations. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 2885–2890 (2015). https://doi.org/10.1109/SMC.2015.502

  2. Jafari, R., Razvarz, S.: Solution of fuzzy differential equations using fuzzy sumudu transforms. Math. Comput. Appl. 23, 1–15 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Razvarz, S., Jafari, R., Yu, W.: Numerical solution of fuzzy differential equations with Z-numbers using fuzzy sumudu transforms. In: IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, 2017, pp. 890–895 (2017). https://doi.org/10.1109/ICIT.2017.7915477

  4. Jafari, R., Yu, W.: Uncertainty nonlinear systems control with fuzzy equations. In: IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, 2017, pp. 890–895 (2015). https://doi.org/10.1109/ICIT.2017.7915477

  5. Jafari, R., Yu. W., Li, X.: Solving fuzzy differential equation with Bernstein neural networks. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, pp. 001245–001250 (2016). https://doi.org/10.1109/SMC.2016.7844412

  6. Jafari. R., Yu, W.: Artificial neural network approach for solving strongly degenerate parabolic and burgers-fisher equations. In: 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, pp. 1–6 (2015). https://doi.org/10.1109/ICEEE.2015.7357914

  7. Jafarian, A., Measoomy nia, S., Jafari, R.: Solving fuzzy equations using neural nets with a new learning algorithm. J. Adv. Comput. Res. 3(4), 33–45 (2012)

    Google Scholar 

  8. Jafari, R., Razvarz, S., Gegov, A., Paul, S.: Fuzzy modeling for uncertain nonlinear systems using fuzzy equations and Z-numbers. In: Advances in Computational Intelligence Systems, UKCI 2018. Advances in Intelligent Systems and Computing, vol. 840, pp. 96–107 (2019)

    Google Scholar 

  9. Jafari, R., Razvarz, S., Gegov, A., Paul, S., Keshtkar, S.: Fuzzy sumudu transform approach to solving fuzzy differential equations with Z-numbers. In: Advanced Fuzzy Logic Approaches in Engineering Science, pp. 1–31 (2019). https://doi.org/10.4018/978-1-5225-5709-8.ch002

  10. Jafari, R., Razvarz, S., Gegov, A.: Solving differential equations with Z-numbers by utilizing fuzzy sumudu transform. In: IntelliSys 2018. Advances in Intelligent Systems and Computing, vol. 869, pp. 1125–1138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01057-7.82

  11. Jafari, R., Razvarz, S., Gegov, A., Paul, S.: Modeling and control of uncertain nonlinear systems. In: International Conference on Intelligent Systems (IS), Funchal - Madeira, Portugal, pp. 168–173 (2018). https://doi.org/10.1109/IS.2018.8710463

  12. Jafari, R., Razvarz, S., Gegov, A.: Fuzzy differential equations for modeling and control of fuzzy systems. In: 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing, ICAFS 2018. Advances in Intelligent Systems and Computing, vol. 896, pp. 732–740. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04164-9-96

  13. Jafari, R., Razvarz, S., Gegov, A.: A novel technique to solve fully fuzzy nonlinear matrix equations. In: 13th International Conference on Applications of Fuzzy Systems and Soft Computing. Advances in Intelligent Systems and Computing. Springer (2018)

    Google Scholar 

  14. Jafari, R., Razvarz, S., Gegov, A.: A new computational method for solving fully fuzzy nonlinear systems. In: Computational Collective Intelligence, ICCCI 2018. Lecture Notes in Computer Science, vol. 11055, pp. 503–512. Springer (2018). https://doi.org/10.1007/978-3-319-98443-8-46

  15. Razvarz, S., Jafari, R., Gegov, A., Yu, W., Paul, S.: Neural network approach to solving fully fuzzy nonlinear systems. In: Fuzzy Modelling and Control Nova Science Publishers, pp. 46–68 (2018)

    Google Scholar 

  16. Yu, W., Jafari, R.: Fuzzy Modeling and Control of Uncertain Nonlinear Systems (IEEE Press Series on Systems Science and Engineering), 1st edn., 208 p. Wiley-IEEE Press (2019). ISBN: 978-1119491552

    Google Scholar 

  17. Friedman, N., Ming, M., Kandel, A.: Fuzzy linear systems. Fuzzy Sets Syst. 96, 201–209 (1998). https://doi.org/10.1016/S0165-0114(96)00270-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Buckley, J., Qu, Y.: Solving linear and quadratic fuzzy equations. Fuzzy Sets Syst. 35, 43–59 (1990). https://doi.org/10.1016/0165-0114(90)90099-R

    Article  MathSciNet  MATH  Google Scholar 

  19. Buckley, J., Hayashi, Y.: Can fuzzy neural nets approximate continuous fuzzy functions. Fuzzy Sets Syst. 61, 43–51 (1994). https://doi.org/10.1016/0165-0114(94)90283-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Gibson, J.: An analysis of optimal modal regulation: convergence and stability. SIAM J. Control. Optim. 19, 686–707 (1981). https://doi.org/10.1137/0319044

    Article  MathSciNet  MATH  Google Scholar 

  21. Kr\(\ddot{o}\)ner, A., Kunisch, K.: A minimum effort optimal control problem for the wave equation. Comput. Optim. Appl. 57, 241–270 (2014). https://doi.org/10.1007/s10589-013-9587-y

    Article  MathSciNet  Google Scholar 

  22. Abbasbandy, S., Ezzati, R.: Newton’s method for solving a system of fuzzy nonlinear equations. Appl. Math. Comput. 175, 1189–1199 (2006). https://doi.org/10.1016/j.amc.2005.08.021

    Article  MathSciNet  MATH  Google Scholar 

  23. Allahviranloo, T., Otadi, M., Mosleh, M.: Iterative method for fuzzy equations. Soft Comput. 12, 935–939 (2008). https://doi.org/10.1007/s00500-007-0263-y

    Article  MATH  Google Scholar 

  24. Kajani, M., Asady, B., Vencheh, A.: An iterative method for solving dual fuzzy nonlinear equations. Appl. Math. Comput. 167, 316–323 (2005). https://doi.org/10.1016/j.amc.2004.06.113

    Article  MathSciNet  MATH  Google Scholar 

  25. Waziri, M., Majid, Z.: A new approach for solving dual fuzzy nonlinear equations using broyden’s and newton’s methods. Adv. Fuzzy Syst., 1–5 (2012). https://doi.org/10.1155/2012/682087

    Article  MathSciNet  Google Scholar 

  26. Pederson, S., Sambandham, M.: The Runge-Kutta method forhybrid fuzzy differential equation. Nonlinear Anal. Hybrid Syst. 2, 626–634 (2008). https://doi.org/10.1016/j.nahs.2006.10.013

    Article  MathSciNet  MATH  Google Scholar 

  27. Tapaswini, S., Chakraverty, S.: Euler-based new solution method for fuzzy initial value problems. Int. J. Artif. Intell. Soft. Comput. 4, 58–79 (2014). https://doi.org/10.1504/IJAISC.2014.059288

    Article  MATH  Google Scholar 

  28. H\(\ddot{u}\)llermeier, E.: An approach to modeling and simulation of uncertain dynamical systems. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5, 117–137 (1997). https://doi.org/10.1142/S0218488597000117

    Article  MathSciNet  Google Scholar 

  29. Guo, S., Mei, L., Zhou, Y.: The compound \(\frac{G^{\prime }}{G}\) expansion method and double non-traveling wave solutions of (2+1)-dimensional nonlinear partial differential equations. Comput. Math. Appl. 69, 804–816 (2015). https://doi.org/10.1016/j.camwa.2015.02.016

    Article  MathSciNet  Google Scholar 

  30. Effati, S., Pakdaman, M.: Artificial neural network approach for solving fuzzy differential equations. Inform. Sci. 180, 1434–1457 (2010). https://doi.org/10.1016/j.ins.2009.12.016

    Article  MathSciNet  MATH  Google Scholar 

  31. Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22, 717–727 (2000). https://doi.org/10.1016/S0731-7085(99)00272-1

    Article  Google Scholar 

  32. Newton, I.: The method of fluxions and infinite series. London: Henry Woodfall, 3, pp. 43–47. https://archive.org/details/methodoffluxions00newt. ISBN: 1498167489, 9781498167482, (1671)

  33. Abbasbandy, S., Asady, B.: Newton’s method for solving fuzzy nonlinear equations. Appl. Math. Comput. 159, 349–356 (2004). https://doi.org/10.1016/j.amc.2003.10.048

    Article  MathSciNet  MATH  Google Scholar 

  34. Brudaru, O., Leon, F., Buzatu, O.: Genetic algorithm for solving fuzzy equations. In: 8th International Symposium on Automatic Control and Computer Science, Iasi. ISBN973-621-086-3

    Google Scholar 

  35. Michalewicz, Z.: Genetic algorithms+data structures=evolution program. In: Artificial Intelligence, 2nd ed. Springer, Berlin. https://doi.org/10.1007/978-3-662-03315-9

    Book  Google Scholar 

  36. Mastorakis, N.: Solving non-linear equations via genetic algorithms. In: 6th WSEAS International Conference on Evolutionary Computing, Lisbon, Portugal, pp. 24–28 (2005)

    Google Scholar 

  37. Abbasbandy, S., Otadi, M.: Numerical solution of fuzzy polynomials by fuzzy neural network. Appl. Math. Comput. 181, 1084–1089 (2006). https://doi.org/10.1016/j.amc.2006.01.073

    Article  MathSciNet  MATH  Google Scholar 

  38. Mosleh, M., Otadi, M.: A new approach to the numerical solution of dual fully fuzzy polynomial equations. Int. J. Ind. Math. 2, 129–142 (2010)

    Google Scholar 

  39. Abbasbandy, S., Allahvinloo, T.: Numerical solutions of fuzzy differential equation. Math. Comput. Appl. 7, 41–52 (2002). https://doi.org/10.3390/mca7010041

    Article  MathSciNet  Google Scholar 

  40. Ma, M., Friedman, M., Kandel, A.: Numerical solutions of fuzzy differential equations. Fuzzy Sets Syst. 105, 133–138 (1999)

    Article  MathSciNet  Google Scholar 

  41. Abbasbandy, S., Allahvinloo, T.: Numerical solutions of fuzzy differential equations by taylor method. Comput. Methods Appl. Math. 2, 113–124 (2002). https://doi.org/10.2478/cmam-2002-0006

    Article  MathSciNet  Google Scholar 

  42. Palligkinis, S., Papageorgiou, G., Famelis, I.: Runge-kutta methods for fuzzy differential equations. Appl. Math. Comput. 209, 97–105 (2009). https://doi.org/10.1016/j.amc.2008.06.017

    Article  MathSciNet  MATH  Google Scholar 

  43. Jayakumar, T., Maheskumar, D., Kanagarajan, K.: Numerical solution of fuzzy differential equations by Runge-Kutta method of order five. Appl. Math. Sci. 6, 2989–3002 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Kanagarajan, K., Sambath, M.: Runge-Kutta nystrom method of order three for solving fuzzy differential equations. Comput. Methods Appl. Math. 10, 195–203 (2010). https://doi.org/10.2478/cmam-2010-0011

    Article  MathSciNet  MATH  Google Scholar 

  45. Hussian, E., Suhhiem, M.: Numerical solution of fuzzy partial differential equations by using modified fuzzy neural networks. Br. J. Math. Comput. Sci. 12, 1–20 (2016). https://doi.org/10.9734/BJMCS/2016/20504

    Article  Google Scholar 

  46. Hussian, E., Suhhiem, M.: Numerical solution of fuzzy differential equations based on Taylor series by using fuzzy neural networks. Adv. Math. 11, 4080–4092 (2015)

    Google Scholar 

  47. Streeter, V., Wylie, E., Benjamin, E.: Fluid Mechanics, 4th edn. McGraw-Hill Book Company

    Google Scholar 

  48. Hazewinkel, M.: Oscillator harmonic. Springer. ISBN

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Jafari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jafari, R., Razvarz, S., Gegov, A., Yu, W. (2020). Fuzzy Control of Uncertain Nonlinear Systems with Numerical Techniques: A Survey. In: Ju, Z., Yang, L., Yang, C., Gegov, A., Zhou, D. (eds) Advances in Computational Intelligence Systems. UKCI 2019. Advances in Intelligent Systems and Computing, vol 1043. Springer, Cham. https://doi.org/10.1007/978-3-030-29933-0_1

Download citation

Publish with us

Policies and ethics