Skip to main content

Autoencoding Binary Classifiers for Supervised Anomaly Detection

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11671))

Included in the following conference series:

Abstract

We propose the Autoencoding Binary Classifiers (ABC), a novel supervised anomaly detector based on the Autoencoder (AE). There are two main approaches in anomaly detection: supervised and unsupervised. The supervised approach accurately detects the known anomalies included in training data, but it cannot detect the unknown anomalies. Meanwhile, the unsupervised approach can detect both known and unknown anomalies that are located away from normal data points. However, it does not detect known anomalies as accurately as the supervised approach. Furthermore, even if we have labeled normal data points and anomalies, the unsupervised approach cannot utilize these labels. The ABC is a probabilistic binary classifier that effectively exploits the label information, where normal data points are modeled using the AE as a component. By maximizing the likelihood, the AE in the proposed ABC is trained to minimize the reconstruction error for normal data points, and to maximize it for known anomalies. Since our approach becomes able to reconstruct the normal data points accurately and fails to reconstruct the known and unknown anomalies, it can accurately discriminate both known and unknown anomalies from normal data points. Experimental results show that the ABC achieves higher detection performance than existing supervised and unsupervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM (2000)

    Google Scholar 

  2. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  3. Dreiseitl, S., Ohno-Machado, L.: Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35(5–6), 352–359 (2002)

    Article  Google Scholar 

  4. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  5. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  9. Kiryo, R., Niu, G., du Plessis, M.C., Sugiyama, M.: Positive-unlabeled learning with non-negative risk estimator. In: Advances in Neural Information Processing Systems, pp. 1675–1685 (2017)

    Google Scholar 

  10. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Cluster Comput, pp. 1–13 (2017)

    Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  12. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Eighth IEEE International Conference on Data Mining 2008. ICDM 2008, pp. 413–422. IEEE (2008)

    Google Scholar 

  13. Lyudchik, O.: Outlier detection using autoencoders. Tech. rep. (2016)

    Google Scholar 

  14. Munawar, A., Vinayavekhin, P., De Magistris, G.: Limiting the reconstruction capability of generative neural network using negative learning. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2017)

    Google Scholar 

  15. Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging 16(4), 049901 (2007)

    Article  MathSciNet  Google Scholar 

  16. Sakai, T., du Plessis, M.C., Niu, G., Sugiyama, M.: Semi-supervised classification based on classification from positive and unlabeled data. arXiv preprint arXiv:1605.06955 (2016)

  17. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, p. 4. ACM (2014)

    Google Scholar 

  18. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Rusboost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(1), 185–197 (2010)

    Article  Google Scholar 

  19. Tagawa, T., Tadokoro, Y., Yairi, T.: Structured denoising autoencoder for fault detection and analysis. In: Asian Conference on Machine Learning, pp. 96–111 (2015)

    Google Scholar 

  20. Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  Google Scholar 

  21. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  22. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674. ACM (2017)

    Google Scholar 

  23. Zong, B., et al.: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Yamanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamanaka, Y., Iwata, T., Takahashi, H., Yamada, M., Kanai, S. (2019). Autoencoding Binary Classifiers for Supervised Anomaly Detection. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics