Skip to main content

Transfer Learning for Driving Pattern Recognition

  • Conference paper
  • First Online:
Book cover PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11671))

Included in the following conference series:

  • 2649 Accesses

Abstract

Driving pattern recognition based on driving status features (GPS, gear, and speed etc.) is of central importance in the development of intelligent transportation. While it is expensive and labor intensive to obtain a large amount of labeled driving data in real applications. It makes the driving pattern recognition particularly difficult for those domains without labeled data. In this paper, to tackle this challenging recognition task, we propose a novel and robust Transfer Learning method for Driving Pattern Recognition (TLDPR) that can transfer knowledge from other related source domains with labeled data to the target domain. Compared to the traditional supervised learning, one of the major difficulties of transfer learning is that the data from different domains may have distinct distributions. The proposed TLDPR is able to reduce the distribution difference in RKHS between the samples in target and source domain with the same driving pattern, and it can preserve the local manifold structure simultaneously. In addition, an iterative ensemble strategy is implemented to make the model more robust using the pseudo-labels. To evaluate the performance of TLDPR, comprehensive experiments have been conducted on parking lots datasets. The results show TLDPR can substantially outperform the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  2. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

    Article  Google Scholar 

  3. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410–1417 (2014)

    Google Scholar 

  4. Gong, B., Shi, Y., Sha, F., Grauman K.: Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066–2073. IEEE (2012)

    Google Scholar 

  5. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  6. Aljundi, R., Emonet, R., Muselet, D., Sebban, M.: Landmarks-based kernelized subspace alignment for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 56–63 (2015)

    Google Scholar 

  7. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  8. Wang, J., Chen, Y., Hu, L., Peng, X., Yu, P.S.: Stratified transfer learning for cross-domain activity recognition. In: 2018 IEEE International Conference on Pervasive Computing and Communications, pp. 1–10. IEEE (2018)

    Google Scholar 

  9. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2200–2207 (2013)

    Google Scholar 

  10. Wang, J., Chen, Y., Hao, S., Feng, W., Shen, Z.: Balanced distribution adaptation for transfer learning. In: 2017 IEEE International Conference on Data Mining, pp. 1129–1134. IEEE (2017)

    Google Scholar 

  11. Long, M., Wang, J., Ding, G., Pan, S.J., Yu, P.S.: Adaptation regularization: a general framework for transfer learning. IEEE Trans. Knowl. Data Eng. 26(5), 1076–1089 (2014)

    Article  Google Scholar 

  12. Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 402–410. ACM (2018)

    Google Scholar 

  13. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1859–1867 (2017)

    Google Scholar 

  14. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(Nov), 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, pp. 321–328 (2004)

    Google Scholar 

  16. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)

    Article  Google Scholar 

  17. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems, pp. 1601–1608 (2005)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the NSFC under Grant No. 61732011, 61702358, the Beijing Natural Science Foundation under Grant No. Z180006, and Key Scientific and Technological Support Projects of Tianjin Key R&D Program under Grant No. 18YFZCGX00390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Yang, L., Hu, Q., Shen, C., Du, Z. (2019). Transfer Learning for Driving Pattern Recognition. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics