Skip to main content

Neural Gray-Box Identification of Nonlinear Partial Differential Equations

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11671))

Included in the following conference series:

  • 2734 Accesses

Abstract

Many branches of the modern computational science and engineering are based on numerical simulations, for which we must prepare appropriate equations that well reflect the behavior of real-world phenomena and numerically solve them. For these purposes, we may utilize the data-driven identification and simulation technique of nonlinear partial differential equations (NPDEs) using deep neural networks (DNNs). A potential issue of the DNN-based identification and simulation in practice is the high variance due to the complexity of DNNs. To alleviate it, we propose a simple yet efficient way to incorporate prior knowledge of phenomena. Specifically, we can often anticipate what kinds of terms are present in a part of an appropriate NPDE, which should be utilized as prior knowledge for identifying the remaining part of the NPDE. To this end, we design DNN’s inputs and the loss function for identification according to the prior knowledge. We present the results of the experiments conducted using three different types of NPDEs: the Korteweg–de Vries equation, the Navier–Stokes equation, and the Kuramoto–Sivashinsky equation. The experimental results show the effectiveness of the proposed method, i.e., utilizing known terms of an NPDE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We only consider the derivatives with regard to x for ease of discussion in this paper, albeit it is straightforward to add other derivatives such as \(u_{tt}\) and \(u_{xt}\) to T.

References

  • Anderson, J.S., Kevrekidisi, I.G., Rico-Martínez, R.: A comparison of recurrent training algorithms for time series analysis and system identification. Comput. Chem. Eng. 20, S751–S756 (1996)

    Article  Google Scholar 

  • Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proc. Nat. Acad. Sci. U.S.A. 104(24), 9943–9948 (2007)

    Article  Google Scholar 

  • Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data: sparse identification of nonlinear dynamical systems. Proc. Nat. Acad. Sci. U.S.A. 113(15), 3932–3937 (2015)

    Article  MathSciNet  Google Scholar 

  • Crutchfield, J.P., McNamara, B.: Equations of motion from a data series. Complex Syst. 1, 417–452 (1987)

    MathSciNet  MATH  Google Scholar 

  • Daniels, B.C., Nemenman, I.: Automated adaptive inference of phenomenological dynamical models. Nat. Commun. 6, 8133 (2015a)

    Article  Google Scholar 

  • Daniels, B.C., Nemenman, I.: Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression. PLoS ONE 10(3), e0119821 (2015b)

    Article  Google Scholar 

  • Driscoll, T.A., Hale, N., Trefethen, L.N. (eds.): Chebfun Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  • González-García, R., Rico-Martínez, R., Kevrekidis, I.G.: Identification of distributed parameter systems: a neural net based approach. Comput. Chem. Eng. 22, S965–S968 (1998)

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, Boca Raton (2018)

    MATH  Google Scholar 

  • Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C.: Equation-free multiscale computation: enabling microscopic simulators to perform system-level tasks. Commun. Math. Sci. 1(4), 715–762 (2003)

    Article  MathSciNet  Google Scholar 

  • Mangan, N.M., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2(1), 52–63 (2016)

    Article  Google Scholar 

  • Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  • Raissi, M.: Deep hidden physics models: deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 19(25), 1–24 (2018)

    MathSciNet  MATH  Google Scholar 

  • Rico-Martínes, R., Kevrekidis, I.G., Kube, M.C., Hudson, J.L.: Discrete- vs. continuous-time nonlinear signal processing: attractors, transitions and parallel implementation issues. Chem. Eng. Commun. 118(1), 25–48 (1992)

    Article  Google Scholar 

  • Roberts, A.J.: Model Emergent Dynamics in Complex Systems. SIAM (2015)

    Google Scholar 

  • Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of partial differential equations. Sci. Adv. 3(4), e1602614 (2017)

    Article  Google Scholar 

  • Schaeffer, H., Osher, S., Caflisch, R., Hauck, C.: Sparse dynamics for partial differential equations. Proc. Nat. Acad. Sci. U.S.A. 110(17), 6634–6639 (2013)

    Article  MathSciNet  Google Scholar 

  • Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2012)

    Article  Google Scholar 

  • Schmidt, M.D., et al.: Automated refinement and inference of analytical models for metabolic networks. Phys. Biol. 8(5), 055011 (2011)

    Article  Google Scholar 

  • Strang, G.: Computational Science and Engineering. Wellesley-Cambridge Press, Wellesley (2007)

    MATH  Google Scholar 

  • Sugihara, G., et al.: Detecting causality in complex ecosystems. Science 338(6106), 496–500 (2012)

    Article  Google Scholar 

  • Tran, G., Ward, R.: Exact recovery of chaotic systems from highly corrupted data. Multiscale Model. Simul. 15(3), 1108–1129 (2017)

    Article  MathSciNet  Google Scholar 

  • Ye, H., et al.: Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proc. Nat. Acad. Sci. U.S.A. 112(13), E1569–E1576 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP18H06487, JP19K21550 and JP19K12094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riku Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sasaki, R., Takeishi, N., Yairi, T., Hori, K. (2019). Neural Gray-Box Identification of Nonlinear Partial Differential Equations. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics