Abstract
The schema matching problem is at the basis of integrating structured and semi-structured data. Being investigated in the fields of databases, AI, semantic Web and data mining for many years, the core challenge still remains the ability to create quality matchers, automatic tools for identifying correspondences among data concepts (e.g., database attributes). In this work, we investigate human matchers behavior using a new concept termed match consistency and introduce a novel use of cognitive models to explain human matcher performance. Using empirical evidence, we further show that human matching suffers from predictable biases when matching schemata, which prevent them from providing consistent matching.
Keywords
- Schema matching
- Data integration
- Human-in-the-loop
This is a preview of subscription content, access via your institution.
Buying options
References
Ackerman, R.: The diminishing criterion model for metacognitive regulation of time investment. J. Exp. Psychol.: Gen. 143, 1349 (2014)
Ackerman, R., Thompson, V.: Meta-reasoning: monitoring and control of thinking and reasoning. TiCS 21, 607–617 (2017)
Raykar, V.C., et al.: Supervised learning from multiple experts: whom to trust when everyone lies a bit. In: ICML (2009)
Barsalou, L.W.: Cognitive Psychology: An Overview for Cognitive Scientists. Psychology Press, New York (2014)
Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-16518-4
Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years later. PVLDB 4, 695–701 (2011)
Bjork, R.A., Dunlosky, J., Kornell, N.: Self-regulated learning: beliefs, techniques, and illusions. Ann. Rev. Psychol. 64, 417–444 (2013)
Bozovic, N., Vassalos, V.: Two phase user driven schema matching. In: ADBIS (2015)
Brewer, N., Wells, G.L.: The confidence-accuracy relationship in eyewitness identification: effects of lineup instructions, foil similarity, and target-absent base rates. J. Exp. Psychol.: Appl. 12, 11 (2006)
De Una, D., Rümmele, N., Gange, G., Schachte, P., Stuckey, P.J.: Machine learning and constraint programming for relational-to-ontology schema mapping. In: IJCAI (2018)
Do, H.H., Rahm, E.: COMA: a system for flexible combination of schema matching approaches. In: VLDB (2002)
Dragisic, Z., Ivanova, V., Lambrix, P., Faria, D., Jiménez-Ruiz, E., Pesquita, C.: User validation in ontology alignment. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 200–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_13
Dunning, D., Heath, C., Suls, J.M.: Flawed self-assessment implications for health, education, and the workplace. Psychol. Sci. Public Interest 5, 69–106 (2004)
Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, New York (2007). https://doi.org/10.1007/978-3-540-49612-0
Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: answering queries with crowdsourcing. In: SIGMOD (2011)
Gal, A.: Uncertain Schema Matching. Morgan & Claypool Publishers, San Rafael (2011)
Gal, A., Roitman, H., Sagi, T.: From diversity-based prediction to better ontology & schema matching. In: WWW (2016)
Gal, A., Roitman, H., Shraga, R.: Heterogeneous data integration by learning to rerank schema matches. In: ICDM (2018)
Goodman, L.A., Kruskal, W.H.: Measures of association for cross classifications. J. Am. Stat. Assoc. 49, 732–764 (1954)
Halevy, A.Y., Madhavan, J.: Corpus-based knowledge representation. In: IJCAI (2003)
Hung, N.Q.V., Nguyen, T.T., Miklós, Z., Aberer, K., Gal, A., Weidlich, M.: Pay-as-you-go reconciliation in schema matching networks. In: ICDE (2014)
Hung, N.Q.V., Tam, N.T., Miklós, Z., Aberer, K.: On leveraging crowdsourcing techniques for schema matching networks. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013. LNCS, vol. 7826, pp. 139–154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37450-0_10
Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for dataspace systems. In: SIGMOD (2008)
Koriat, A.: Subjective confidence in one’s answers: the consensuality principle. J. Exp. Psychol.: Learn. Memory Cognit. 34, 945–959 (2008)
Koriat, A.: When reality is out of focus: can people tell whether their beliefs and judgments are correct or wrong? J. Exp. Psychol.: Gen. 147, 613 (2018)
McCann, R., Shen, W., Doan, A.: Matching schemas in online communities: a web 2.0 approach. In: ICDE (2008)
Peukert, E., Eberius, J., Rahm, E.: AMC-a framework for modelling and comparing matching systems as matching processes. In: ICDE (2011)
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDBJ 10, 334–350 (2001)
Sagi, T., Gal, A.: In schema matching, even experts are human. towards expert sourcing in schema matching. In: IIWeb (2014)
Sarasua, C., Simperl, E., Noy, N.F.: CrowdMap: crowdsourcing ontology alignment with microtasks. In: ISWC (2012)
Shraga, R., Gal, A., Roitman, H.: What type of a matcher are you?: coordination of human and algorithmic matchers. In: HILDA@SIGMOD (2018)
Sidi, Y., Shpigelman, M., Zalmanov, H., Ackerman, R.: Understanding metacognitive inferiority on screen by exposing cues for depth of processing. Learn. Instr. 51, 61–73 (2017)
Simonsen, J.C.: Coefficient of variation as a measure of subject effort. Arch. PM&R 76, 516–520 (1995)
Undorf, M., Ackerman, R.: The puzzle of study time allocation for the most challenging items. Psychon. Bull. Rev. 24, 2003–2011 (2017)
Zhang, C., Chen, L., Jagadish, H., Zhang, M., Tong, Y.: Reducing uncertainty of schema matching via crowdsourcing with accuracy rates. TKDE (2018). https://www.computer.org/csdl/journal/tk/5555/01/08533346/17D45XreC6p
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ackerman, R., Gal, A., Sagi, T., Shraga, R. (2019). A Cognitive Model of Human Bias in Matching. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11670. Springer, Cham. https://doi.org/10.1007/978-3-030-29908-8_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-29908-8_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29907-1
Online ISBN: 978-3-030-29908-8
eBook Packages: Computer ScienceComputer Science (R0)