Characterizing the Expressivity of Game Description Languages

  • Guifei JiangEmail author
  • Laurent Perrussel
  • Dongmo Zhang
  • Heng Zhang
  • Yuzhi Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11670)


Bisimulations are a key notion to study the expressive power of a modal language. This paper studies the expressiveness of Game Description Language (GDL) and its epistemic extension EGDL through a bisimulations approach. We first define a notion of bisimulation for GDL and prove that it coincides with the indistinguishability of GDL-formulas. Based on it, we establish a characterization of the definability of GDL in terms of k-bisimulations. Then we define a novel notion of bisimulation for EGDL, and obtain a characterization of the expressive power of EGDL. In particular, we show that a special case of the bisimulation for EGDL can be used to characterize the expressivity of GDL. These characterizations not only justify the notions of bisimulation are appropriate for game description languages, but also provide a powerful tool to identify their expressive power.


Bisimulation equivalence Expressive power Game description languages 



Guifei Jiang acknowledges the support of the National Natural Science Foundation of China (No. 61806102), the Fundamental Research Funds for the Central Universities, and the Major Program of the National Social Science Foundation of China (No. 17ZDA026). Laurent Perrussel acknowledges the support of the ANR project AGAPE ANR-18-CE23-0013.


  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    van Benthem, J.: Modal correspondence theory. Ph.D. thesis, University of Amsterdam (1977)Google Scholar
  3. 3.
    van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol. 165, pp. 167–247. Springer, Dordrecht (1984). Scholar
  4. 4.
    van Benthem, J., Bezhanishvili, N., Enqvist, S.: A new game equivalence and its modal logic. In: Proceedings Sixteenth Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2017), pp. 57–74 (2017)Google Scholar
  5. 5.
    Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  6. 6.
    Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic, vol. 3. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  7. 7.
    Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6), 677–693 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26(2), 62–72 (2005)Google Scholar
  9. 9.
    Goranko, V.: The basic algebra of game equivalences. Stud. Logica 75(2), 221–238 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Grädel, E., Otto, M.: The freedoms of (guarded) bisimulation. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 3–31. Springer, Cham (2014). Scholar
  11. 11.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM (JACM) 32(1), 137–161 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Jiang, G., Zhang, D., Perrussel, L., Zhang, H.: Epistemic GDL: a logic for representing and reasoning about imperfect information games. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 1138–1144 (2016)Google Scholar
  13. 13.
    Lorini, E., Schwarzentruber, F.: A path in the jungle of logics for multi-agent system: on the relation between general game-playing logics and seeing-to-it-that logics. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2017), pp. 687–695 (2017)Google Scholar
  14. 14.
    Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game playing: game description language specification. Stanford Logic Group Computer Science Department Stanford University (2006).
  15. 15.
    Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). Scholar
  16. 16.
    Pauly, M.: Logic for social software. Ph.D. thesis, University of Amsterdam (2001). ILLC Dissertation Series 2001-10Google Scholar
  17. 17.
    Reiter, R.: The frame problem in the situation calculus: a simple solution (sometimes) and a completeness result for goal regression. Artif. Intell. Math. Theory Comput. Pap. Honor John McCarthy 27, 359–380 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ruan, J., van Der Hoek, W., Wooldridge, M.: Verification of games in the game description language. J. Logic Comput. 19(6), 1127–1156 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Thielscher, M.: A general game description language for incomplete information games. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 994–999 (2010)Google Scholar
  20. 20.
    Thielscher, M.: GDL-III: a description language for epistemic general game playing. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 1276–1282 (2017)Google Scholar
  21. 21.
    Zhang, D., Thielscher, M.: Representing and reasoning about game strategies. J. Philos. Logic 44(2), 203–236 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Zhang, H., Liu, D., Li, W.: Space-consistent game equivalence detection in general game playing. In: Cazenave, T., Winands, M.H.M., Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J. (eds.) CGW/GIGA -2015. CCIS, vol. 614, pp. 165–177. Springer, Cham (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Guifei Jiang
    • 1
    Email author
  • Laurent Perrussel
    • 2
  • Dongmo Zhang
    • 3
  • Heng Zhang
    • 4
  • Yuzhi Zhang
    • 1
  1. 1.Nankai UniversityTianjinChina
  2. 2.University of ToulouseToulouseFrance
  3. 3.Western Sydney UniversityPenrithAustralia
  4. 4.Tianjin UniversityTianjinChina

Personalised recommendations