Advertisement

Non-contact Heart Rate Monitoring Using Multiple RGB Cameras

Conference paper
  • 505 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11679)

Abstract

Recent advances in computer vision and signal processing are enabling researchers to realize mechanisms for the remote monitoring of vital signs. The remote measurement of vital signs, including heart rate (HR), Heart Rate Variability (HRV), and respiratory rate, presents important advantages for patients. For instance, continuous remote monitoring alleviates the discomfort due to skin irritation and/or mobility limitation associated with contact-based measurement techniques. Recently, several studies presented methods to measure HR and HRV by detecting the Blood Volume Pulse (BVP) from the human skin. They use a single camera to capture a visible segment of the skin such as face, hand, or foot to monitor the BVP. We propose a remote HR measurement algorithm that uses multiple cameras to capture the facial video recordings of still and moving subjects. Using Independent Component Analysis (ICA) as a Blind Source Separation (BSS) method, we isolate the physiological signals from noise in the RGB facial video recordings. With respect to the ECG measurement ground truth, the proposed method decreases the RMSE by 18% compared to the state-of-the-art in the subject movement condition. The proposed method achieves an RMSE of 1.43 bpm and 0.96 bpm in the stationary and movement conditions respectively.

Keywords

Photoplethysmogram Independent component analysis (ICA) Remote heart rate measurement Multiple camera monitoring 

Refrences

  1. 1.
    Kranjec, J., Begus, S., Drnovsek, J., Gersak, G.: Novel methods for noncontact heart rate measurement: a feasibility study. IEEE Trans. Instrum. Meas. 63, 838–847 (2014).  https://doi.org/10.1109/TIM.2013.2287118CrossRefGoogle Scholar
  2. 2.
    Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y.H., Koo, B.-H.: Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 15, 235–245 (2018).  https://doi.org/10.30773/pi.2017.08.17CrossRefGoogle Scholar
  3. 3.
    Al Osman, H., Dong, H., El Saddik, A.: Ubiquitous biofeedback serious game for stress management. IEEE Access (2016).  https://doi.org/10.1109/ACCESS.2016.2548980CrossRefGoogle Scholar
  4. 4.
    Villarroel, M., et al.: Continuous non-contact vital sign monitoring in neonatal intensive care unit. Healthc. Technol. Lett. 1, 87–91 (2014).  https://doi.org/10.1049/htl.2014.0077CrossRefGoogle Scholar
  5. 5.
    Poh, M.-Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18, 10762 (2010).  https://doi.org/10.1364/OE.18.010762CrossRefGoogle Scholar
  6. 6.
    Poh, M.Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. (2011).  https://doi.org/10.1109/TBME.2010.2086456CrossRefGoogle Scholar
  7. 7.
    van Gastel, M., Stuijk, S., de Haan, G.: Robust respiration detection from remote photoplethysmography. Biomed. Opt. Express 7, 4941 (2016).  https://doi.org/10.1364/BOE.7.004941CrossRefGoogle Scholar
  8. 8.
    Comon, P.: Independent component analysis, a new concept?*. Signal Process. 36, 28–314 (1994). Comon/Signal Process.CrossRefGoogle Scholar
  9. 9.
    Ghanadian, H., Ghodratigohar, M., Al Osman, H.: A machine learning method to improve non-contact heart rate monitoring using an RGB camera. IEEE Access (2018).  https://doi.org/10.1109/ACCESS.2018.2872756CrossRefGoogle Scholar
  10. 10.
    Sajjacholapunt, P., Ball, L.J.: The influence of banner advertisements on attention and memory: human faces with averted gaze can enhance advertising effectiveness. Front. Psychol. 5, 166 (2014).  https://doi.org/10.3389/fpsyg.2014.00166CrossRefGoogle Scholar
  11. 11.
    Stiefelhagen, R.: Tracking focus of attention in meetings. In: 4th IEEE International Conference on Multimodal Interfaces. IEEE Computer Society (2002)Google Scholar
  12. 12.
    Sun, N., Garbey, M., Merla, A., Pavlidis, I.: Imaging the cardiovascular pulse. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), pp. 416–421. IEEE (2005).  https://doi.org/10.1109/CVPR.2005.184
  13. 13.
    Pereira, C.B., Yu, X., Czaplik, M., Rossaint, R., Blazek, V., Leonhardt, S.: Remote monitoring of breathing dynamics using infrared thermography. Biomed. Opt. Express 6, 4378–4394 (2015).  https://doi.org/10.1364/BOE.6.004378CrossRefGoogle Scholar
  14. 14.
    Takano, C., Ohta, Y.: Heart rate measurement based on a time-lapse image. Med. Eng. Phys. 29, 853–857 (2007).  https://doi.org/10.1016/j.medengphy.2006.09.006CrossRefGoogle Scholar
  15. 15.
    McDuff, D., Gontarek, S., Picard, R.W.: Improvements in remote cardiopulmonary measurement using a five band digital camera. IEEE Trans. Biomed. Eng. (2014).  https://doi.org/10.1109/TBME.2014.2323695CrossRefGoogle Scholar
  16. 16.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, p. I-511–I-518. IEEE Computer Society (2001).  https://doi.org/10.1109/CVPR.2001.990517
  17. 17.
    Mcduff, D.: Fusing partial camera signals for noncontact pulse rate variability measurement. IEEE Trans. Biomed. Eng. 65, 1725–1739 (2018).  https://doi.org/10.1109/TBME.2017.2771518CrossRefGoogle Scholar
  18. 18.
    Estepp, J.R., Blackford, E.B., Meier, C.M.: Recovering pulse rate during motion artifact with a multi-imager array for non-contact imaging photoplethysmography. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1462–1469. IEEE (2014).  https://doi.org/10.1109/SMC.2014.6974121
  19. 19.
    Gupta, O., McDuff, D., Raskar, R.: Real-time physiological measurement and visualization using a synchronized multi-camera system. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). pp. 312–319. IEEE (2016).  https://doi.org/10.1109/CVPRW.2016.46
  20. 20.
    Baltrušaitis, T., Robinson, P., Morency, L.-P.: OpenFace: an open source facial behavior analysis toolkit. In: IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of OttawaOttawaCanada

Personalised recommendations