Skip to main content

Using the Properties of Primate Motion Sensitive Neurons to Extract Camera Motion and Depth from Brief 2-D Monocular Image Sequences

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2019)

Abstract

Humans and most animals can run/fly and navigate efficiently through cluttered environments while avoiding obstacles in their way. Replicating this advanced skill in autonomous robotic vehicles currently requires a vast array of sensors coupled with computers that are bulky, heavy and power hungry. The human eye and brain have had millions of years to develop an efficient solution to the problem of visual navigation and we believe that it is the best system to reverse engineer. Our brain and visual system appear to use a very different solution to the visual odometry problem compared to most computer vision approaches. We show how a neural-based architecture is able to extract self-motion information and depth from monocular 2-D video sequences and highlight how this approach differs from standard CV techniques. We previously demonstrated how our system works during pure translation of a camera. Here, we extend this approach to the case of combined translation and rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vis. 2(3), 283–310 (1989)

    Article  Google Scholar 

  2. Born, R.T., Bradley, D.: Structure and function of visual area MT. Ann. Rev. Neurosci. 28, 157–189 (2005)

    Article  Google Scholar 

  3. Britten, K.H.: Mechanisms of self-motion perception. Ann. Rev. Neurosci. 31, 389–410 (2008)

    Article  Google Scholar 

  4. Cree, M.J., Perrone, J.A., Anthonys, G., Garnett, A.C., Gouk, H.: Estimating heading direction from monocular video sequences using biologically-based sensors. In: Proceedings of the 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 116–121 (2016)

    Google Scholar 

  5. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Transact. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)

    Article  Google Scholar 

  6. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  7. Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation: a survey. J. Comput. Vis. Image Underst. 134, 1–21 (2015)

    Article  MATH  Google Scholar 

  8. Foster, K.H., Gaska, J.P., Nagler, M., Pollen, D.A.: Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the Macaque monkey. J. Physiol. 365, 331–363 (1985)

    Article  Google Scholar 

  9. Fraundorfer, F., Scaramuzza, D.: Visual odometry part II: matching, robustness, optimization, and applications. IEEE Robot. Autom. Mag. 19(2), 78–90 (2012)

    Article  Google Scholar 

  10. Gibson, J.: The Perception of the Visual World. Houghton Mifflin, Boston (1950)

    Google Scholar 

  11. Hawken, M., Parker, A.: Spatial properties of neurons in the monkey striate cortex. Proc. Royal Soc. London B. 231, 251–288 (1987)

    Article  Google Scholar 

  12. Hawken, M., Shapley, R., Grosof, D.: Temporal frequency selectivity in monkey visual cortex. J. Neurosci. 13, 477–492 (1996)

    Google Scholar 

  13. Horn, B.K.P., Schunk, B.G.: Determining optic flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  14. Inaba, N., Shinomoto, S., Yamane, S., Takemura, A., Kawano, K.: MST neurons code for visual motion in space independent of pursuit eye movements. J. Neurophysiol. 97(5), 3473–3483 (2007)

    Article  Google Scholar 

  15. Irani, M., Anandan, P.: About direct methods. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 267–277. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_18

    Chapter  Google Scholar 

  16. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  17. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–10. Nara, Japan (2007)

    Google Scholar 

  18. Koenderink, J.J., van Doorn, A.: Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Optica Acta 22(9), 773–791 (1975)

    Article  Google Scholar 

  19. Longuet-Higgins, H.C., Prazdny, K.: The interpretation of moving retinal images. In: Proceedings of the Royal Society of London B. B 208, 385–387 (1980)

    Google Scholar 

  20. Maunsell, J., Van Essen, D.: Functional properties of neurons in the middle temporal visual area of the Macaque monkey. I. selectivity for stimulus direction, speed, orientation. J. Neurophysiol. 49, 1127–1147 (1983)

    Article  Google Scholar 

  21. Movshon, J.A., Adelson, E., Gizzi, M.S., Newsome, W.T.: The analysis of visual moving patterns. In: Chagas, C., Gross, C. (eds.) Pattern Recognition Mechanisms, pp. 117–151. Springer, New York (1985)

    Chapter  Google Scholar 

  22. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Transact. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  23. Nakayama, K.: Biological image motion processing: a review. Vision. Res. 25(5), 625–660 (1984)

    Article  Google Scholar 

  24. Perrone, J.A.: A visual motion sensor based on the properties of V1 and MT neurons. Vis. Res. 44(15), 1733–1755 (2004)

    Article  Google Scholar 

  25. Perrone, J.A.: Economy of scale: A motion sensor with variable speed tuning. J. Vis. 5(1), 28–33 (2005)

    Article  MathSciNet  Google Scholar 

  26. Perrone, J.A.: A neural-based code for computing image velocity from small sets of middle temporal (MT/V5) neuron inputs. J. Vis. 12(8), 1 (2012)

    Article  Google Scholar 

  27. Perrone, J.A., Cree, M.J., Hedayati, M., Corlett, D.: Testing a biologically-based system for extracting depth from brief monocular 2-D video sequences. In: International Conference on Image and Vision Computing New Zealand. Auckland, New Zealand, November 2018

    Google Scholar 

  28. Perrone, J.A., Krauzlis, R.: Vector subtraction using visual and extraretinal motion signals: a new look at efference copy and corollary discharge theories. J. Vis. 8(14), 1–14 (2008)

    Article  Google Scholar 

  29. Perrone, J.A., Thiele, A.: Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat. Neurosci. 4(5), 526–532 (2001)

    Article  Google Scholar 

  30. Perrone, J.A., Thiele, A.: A model of speed tuning in MT neurons. Vis. Res. 42(8), 1035–1051 (2002)

    Article  Google Scholar 

  31. Perrone, J.: Model for the computation of self-motion in biological systems. J. Opt. Soc. Am. 9, 177–194 (1992)

    Article  Google Scholar 

  32. Perrone, J., Stone, L.: A model of self-motion estimation within primate extrastriate visual cortex. Vis. Res. 34, 2917–2938 (1994)

    Article  Google Scholar 

  33. Ranftl, R., Vineet, V., Chen, Q., Koltun, V.: Dense monocular depth estimation in complex dynamic scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4058–4066 (2016)

    Google Scholar 

  34. Regan, D., Beverley, K.I.: How do we avoid confounding the direction we are looking and the direction we are moving? Science 215(8), 194–196 (1982)

    Article  Google Scholar 

  35. Scaramuzza, D., Fraundorfer, F.: Visual odometry part I: the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  36. Valgaerts, L., Bruhn, A., Mainberger, M., Weickert, J.: Dense versus sparse approaches for estimating the fundamental matrix. Int. J. Comput. Vis. 96(2), 212–234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Warren, W.: Optic flow. In: Chalupa, L., Werner, J. (eds.) The Visual Neurosciences, vol. 2, pp. 1247–1259. Bradford, Cambridge (2003)

    Google Scholar 

  38. Watson, A., Ahumada, A.: A look at motion in the frequency domain. In: Tsotsos, J. (ed.) Motion: Perception and representation, pp. 1–10. Association for Computing Machinery, New York (1983)

    Google Scholar 

  39. Watson, A., Ahumada, A.: Model of human visual-motion sensing. J. Opt. Soc. Am. A: 2, 322–342 (1985)

    Article  Google Scholar 

  40. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: Large displacement optical flow with deep matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1385–1392 (2013)

    Google Scholar 

  41. Wuerger, S., Shapley, R., Rubin, N.: On the visually perceived direction of motion by Hans Wallach: 60 years later. Perception 25(11), 1317–1367 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Perrone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perrone, J.A., Cree, M.J., Hedayati, M. (2019). Using the Properties of Primate Motion Sensitive Neurons to Extract Camera Motion and Depth from Brief 2-D Monocular Image Sequences. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29888-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29887-6

  • Online ISBN: 978-3-030-29888-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics