Skip to main content

A Discrete Approach for Polygonal Approximation of Irregular Noise Contours

  • 1408 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11678)

Abstract

Polygonal approximation is often involved in many applications of computer vision, image processing and data compression. In this context, we are interested in digital curves extracted from contours of objects contained in digital images. In particular, we propose a fully discrete structure, based on the notion of blurred segments, to study the geometrical features on such curves and apply it in a process of polygonal approximation. The experimental results demonstrate the robustness of the proposed method to local variation and noise on the curve.

Keywords

  • Discrete structure
  • Polygonal representation
  • Dominant point

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. DGtal: Digital geometry tools and algorithms library. http://libdgtal.org

  2. Kima216 database. http://classif.ai/dataset/kima216

  3. Attneave, E.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183–193 (1954)

    CrossRef  Google Scholar 

  4. Carmona-Poyato, A., Fernández-García, N.L., Medina-Carnicer, R., Madrid-Cuevas, F.J.: Dominant point detection: a new proposal. Image Vis. Comput. 23(13), 1226–1236 (2005)

    CrossRef  Google Scholar 

  5. Prasad, D.K., Leung, M.L.: Polygonal representation of digital curves. In: Digital Image Processing (2012)

    Google Scholar 

  6. Faure, A., Buzer, L., Feschet, F.: Tangential cover for thick digital curves. Pattern Recogn. 42(10), 2279–2287 (2009)

    CrossRef  Google Scholar 

  7. Isabelle, D.R., Fabien, F., Jocelyne, R.D.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)

    CrossRef  Google Scholar 

  8. Isabelle, D.R., Rémy, J.L., Jocelyne, R.D.: Segmentation of discrete curves into fuzzy segments. Discrete Math. 12, 372–383 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Kerautret, B., Lachaud, J.-O.: Multi-scale analysis of discrete contours for unsupervised noise detection. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 187–200. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10210-3_15

    CrossRef  MATH  Google Scholar 

  10. Kerautret, B., Lachaud, J.O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2379–2392 (2012)

    CrossRef  Google Scholar 

  11. Kerautret, B., Lachaud, J.O., Said, M.: Meaningful thicknes detection on polygonal curve. In: International Conference on Pattern Recognition Applications and Methods, pp. 372–379 (2012)

    Google Scholar 

  12. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, Burlington (2004)

    MATH  Google Scholar 

  13. Lachaud, J.O.: Espaces non-euclidiens et analyse d’image: modèles déformables riemanniens et discrets, topologie et géométrie discrète. Habilitation à Diriger des Recherches, Université Bordeaux 1, Talence, France (2006). (in French)

    Google Scholar 

  14. Lachaud, J.-O.: Digital shape analysis with maximal segments. In: Köthe, U., Montanvert, A., Soille, P. (eds.) WADGMM 2010. LNCS, vol. 7346, pp. 14–27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32313-3_2

    CrossRef  Google Scholar 

  15. Liu, H., Latecki, L.J., Liu, W.: A unified curvature definition for regular, polygonal, and digital planar curves. Inter. J. Comput. Vis. 80(1), 104–124 (2008)

    CrossRef  Google Scholar 

  16. Marji, M., Siy, P.: Polygonal representation of digital planar curves through dominant point detection - a nonparametric algorithm. Pattern Recogn. 37(11), 2113–2130 (2004)

    CrossRef  Google Scholar 

  17. Nasser, H., Ngo, P., Debled-Rennesson, I.: Dominant point detection based on discrete curve structure and applications. J. Comput. Syst. Sci. 85, 177–192 (2018)

    CrossRef  MathSciNet  Google Scholar 

  18. Ngo, P., Debled-Rennesson, I., Kerautret, B., Nasser, H.: Analysis of noisy digital contours with adaptive tangential cover. J. Math. Imaging Vis. 59(1), 123–135 (2017)

    CrossRef  MathSciNet  Google Scholar 

  19. Ngo, P., Nasser, H., Debled-Rennesson, I.: A discrete approach for decomposing noisy digital contours into arcs and segments. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10117, pp. 493–505. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54427-4_36

    CrossRef  Google Scholar 

  20. Ngo, P., Nasser, H., Debled-Rennesson, I.: Efficient dominant point detection based on discrete curve structure. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 143–156. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26145-4_11

    CrossRef  Google Scholar 

  21. Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recogn. 44(1), 32–44 (2011)

    CrossRef  Google Scholar 

  22. Nguyen, T.P., Kerautret, B., Debled-Rennesson, I., Lachaud, J.-O.: Unsupervised, fast and precise recognition of digital arcs in noisy images. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 59–68. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15910-7_7

    CrossRef  Google Scholar 

  23. Ray, K.S., Ray, B.K.: Polygonal Approximation and Scale-Space Analysis of Closed Digital Curves. CRC Press, Boca Raton (2013)

    CrossRef  Google Scholar 

  24. Sarkar, D.: A simple algorithm for detection of significant vertices for polygonal approximation of chain-coded curves. Pattern Recogn. Lett. 14(12), 959–964 (1993)

    CrossRef  Google Scholar 

  25. Sivignon, I.: A near-linear time guaranteed algorithm for digital curve simplification under the fréchet distance. Image Process. Line 4, 116–127 (2014)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ngo, P. (2019). A Discrete Approach for Polygonal Approximation of Irregular Noise Contours. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29888-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29887-6

  • Online ISBN: 978-3-030-29888-3

  • eBook Packages: Computer ScienceComputer Science (R0)