Abstract
Polygonal approximation is often involved in many applications of computer vision, image processing and data compression. In this context, we are interested in digital curves extracted from contours of objects contained in digital images. In particular, we propose a fully discrete structure, based on the notion of blurred segments, to study the geometrical features on such curves and apply it in a process of polygonal approximation. The experimental results demonstrate the robustness of the proposed method to local variation and noise on the curve.
Keywords
- Discrete structure
- Polygonal representation
- Dominant point
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
DGtal: Digital geometry tools and algorithms library. http://libdgtal.org
Kima216 database. http://classif.ai/dataset/kima216
Attneave, E.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183–193 (1954)
Carmona-Poyato, A., Fernández-García, N.L., Medina-Carnicer, R., Madrid-Cuevas, F.J.: Dominant point detection: a new proposal. Image Vis. Comput. 23(13), 1226–1236 (2005)
Prasad, D.K., Leung, M.L.: Polygonal representation of digital curves. In: Digital Image Processing (2012)
Faure, A., Buzer, L., Feschet, F.: Tangential cover for thick digital curves. Pattern Recogn. 42(10), 2279–2287 (2009)
Isabelle, D.R., Fabien, F., Jocelyne, R.D.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)
Isabelle, D.R., Rémy, J.L., Jocelyne, R.D.: Segmentation of discrete curves into fuzzy segments. Discrete Math. 12, 372–383 (2003)
Kerautret, B., Lachaud, J.-O.: Multi-scale analysis of discrete contours for unsupervised noise detection. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 187–200. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10210-3_15
Kerautret, B., Lachaud, J.O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2379–2392 (2012)
Kerautret, B., Lachaud, J.O., Said, M.: Meaningful thicknes detection on polygonal curve. In: International Conference on Pattern Recognition Applications and Methods, pp. 372–379 (2012)
Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, Burlington (2004)
Lachaud, J.O.: Espaces non-euclidiens et analyse d’image: modèles déformables riemanniens et discrets, topologie et géométrie discrète. Habilitation à Diriger des Recherches, Université Bordeaux 1, Talence, France (2006). (in French)
Lachaud, J.-O.: Digital shape analysis with maximal segments. In: Köthe, U., Montanvert, A., Soille, P. (eds.) WADGMM 2010. LNCS, vol. 7346, pp. 14–27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32313-3_2
Liu, H., Latecki, L.J., Liu, W.: A unified curvature definition for regular, polygonal, and digital planar curves. Inter. J. Comput. Vis. 80(1), 104–124 (2008)
Marji, M., Siy, P.: Polygonal representation of digital planar curves through dominant point detection - a nonparametric algorithm. Pattern Recogn. 37(11), 2113–2130 (2004)
Nasser, H., Ngo, P., Debled-Rennesson, I.: Dominant point detection based on discrete curve structure and applications. J. Comput. Syst. Sci. 85, 177–192 (2018)
Ngo, P., Debled-Rennesson, I., Kerautret, B., Nasser, H.: Analysis of noisy digital contours with adaptive tangential cover. J. Math. Imaging Vis. 59(1), 123–135 (2017)
Ngo, P., Nasser, H., Debled-Rennesson, I.: A discrete approach for decomposing noisy digital contours into arcs and segments. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10117, pp. 493–505. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54427-4_36
Ngo, P., Nasser, H., Debled-Rennesson, I.: Efficient dominant point detection based on discrete curve structure. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 143–156. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26145-4_11
Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recogn. 44(1), 32–44 (2011)
Nguyen, T.P., Kerautret, B., Debled-Rennesson, I., Lachaud, J.-O.: Unsupervised, fast and precise recognition of digital arcs in noisy images. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 59–68. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15910-7_7
Ray, K.S., Ray, B.K.: Polygonal Approximation and Scale-Space Analysis of Closed Digital Curves. CRC Press, Boca Raton (2013)
Sarkar, D.: A simple algorithm for detection of significant vertices for polygonal approximation of chain-coded curves. Pattern Recogn. Lett. 14(12), 959–964 (1993)
Sivignon, I.: A near-linear time guaranteed algorithm for digital curve simplification under the fréchet distance. Image Process. Line 4, 116–127 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ngo, P. (2019). A Discrete Approach for Polygonal Approximation of Irregular Noise Contours. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-29888-3_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29887-6
Online ISBN: 978-3-030-29888-3
eBook Packages: Computer ScienceComputer Science (R0)
