Skip to main content

Role of Nanotechnology in Futuristic Warfare

  • Chapter
  • First Online:

Abstract

Although warfare technology is very advanced in terms of the development and availability of deadly directed energy weapons, their delivery platforms, surveillance technologies in acquition of military targets with great accuracy. Three technologies, namely nano, information, and biotechnology, are believed to be the technologies of the twenty-first century that will have their impact felt in the futuristic war scenarios. The combination of information and nanotechnology in the form of artificial intelligence may lead to the replacement of human beings with unmanned intelligent robotic systems performing duties in highly hazardous environments in areas affected by the use of weapons of mass destruction. The nanotechnology-enabled quantum communication may lead to highly secured unbreakable information sharing between friendly forces. Furthermore, a combination of nano- and biotechnologies is expected to generate a new class of nano- and bioweapons hitting human targets even indoors without their presence being noticed by the enemy. Some of such weapons may prove to be the weapons of mass extinction. Nanotechnology on the other hand may also provide protective measures against such weaponries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Glasstone, P.J. Dolan, The Effects of Nuclear Weapons (United States Government Printing, 1983)

    Google Scholar 

  2. H. Duim, S. Otto, Towards open-ended evolution in self-replicating molecular systems. Beilstein J. Org. Chem. 13, 1189–1203 (2017)

    Article  CAS  Google Scholar 

  3. https://www.pocket-lint.com/gadgets/news/142272-28-incredible-futuristic-weapons-showing-modern-military-might

  4. C.N. Ghosh, Directed Energy Weapons, https://www.idsa-india.org/an-feb-7-01.html

  5. C. Kopp, The Electromagnetic Bomb – a Weapon of Electrical Mass Destruction; https://www.globalsecurity.org/military/library/report/1996/apjemp.htm; C. Simons, The dawn of e-bomb, IEEE Spectrum, 24–30, (2003) (https://ethw.org/w/images/3/3b/Vircator_e-bomb.pdf)

  6. U.S. Air Force Research Laboratory, High-power microwaves, fact sheet, September 2002, at http://www.de.afrl.af.mil/Factsheets/HPM.swf (March 15, 2006)

  7. S. Adams, Electrical Power and Thermal Management for Airborne Directed Energy Weapons, U.S. Air Force Research Laboratory, September 2001, at http://www.afrlhorizons.com/Briefs/Sept01/PR0101.html (March 15, 2006)

  8. C. Kopp, The Electromagnetic Bomb-A Weapon of Electrical Mass Destruction, at http://www.globalsecurity.org/military/library/report/1996/apjemp.htm (March 15, 2006); A. Kochems, A. Gudgel, The viability of directed energy weapon, https://www.heritage.org/missile-defense/report/the-viability-directed-energy-weapons

  9. https://electronicsforu.com/market-verticals/directed-energy-weapons-high-power-microwaves

  10. GlobalSecurity.org, High Power Microwave (HPM)/E-Bomb, at http://www.globalsecurity.org/military/systems/munitions/hpm.htm (March 15, 2006)

  11. U.S. Air Force Research Laboratory, Active Denial System, fact sheet, September 2005, at http://www.de.afrl.af.mil/Factsheets/ActiveDenial.swf (March 15, 2006)

  12. Ibid.

    Google Scholar 

  13. Press release, Northrop Grumman Surpasses Power, Run-Time Requirements of Joint High Power Solid-State Laser Program for Military Use, Northrop Grumman Corporation, November 9, 2005, at http://www.irconnect.com/noc/press/pages/news_releases.mhtml?d=89438 (March 15, 2006)

  14. Encyclopedia Britannica, 15th ed., s.v. “laser.”

    Google Scholar 

  15. S. Chapman, The airborne laser, Air Force Magazine, Vol. 79, No. 1 (January 1996), at http://www.afa.org/magazine/jan1996/0196airbo.asp (March 15, 2006)

  16. GlobalSecurity.org, Patriot Advanced Capability-3 (PAC-3), at http://www.globalsecurity.org/space/systems/patriot-ac-3.htm (March 15, 2006)

  17. G. Wilson, B.R. Graves, S.P. Patterson, R.H. Wank, Deuterium fluoride laser technology and demonstrators. Proc. SPIE 5414, 41–51 (2004)

    Article  Google Scholar 

  18. https://www.cnet.com/news/boeing-trucks-ahead-with-8-wheeling-laser-weapon/,

  19. https://www.militaryaerospace.com/articles/2017/04/laser-weapons.html

  20. K. Jamila, Overview on the Oxygen-Iodine Laser technology, XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. Edited by Schuöcker, Dieter. Proceedings of the SPIE, Volume 6346, article id. 634609 (2007)

    Google Scholar 

  21. https://sputniknews.com/us/201512241032229803-us-test-airborne-laser-weapon/, https://www.militaryaerospace.com/articles/2017/04/laser-weapons.html

  22. R. M. Roberds, Introducing the Particle-Beam Weapon, Air University Review, July–August 1984, http://www.airpower.maxwell.af.mil/airchronicles/aureview/1984/jul-aug/roberds.html (March 15, 2006)

  23. https://www.britannica.com/technology/artificial-intelligence

  24. https://atos.net/content/dam/global/ascent-whitepapers/ascent-whitepaper-the-convergence-of-it-and-operational-technology.pdf

  25. https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

  26. P. Fraga-Lamas, T.M. Fernández-Caramés, M. Suárez-Albela, L. Castedo, M. González-López, A review on internet of things for defense and public safety. Sensors (Basel) 16(10), 1644 (2016)

    Article  Google Scholar 

  27. A.A. Osuwa, E.B. Ekhoragbon, L.T. Fat, Application of artificial intelligence in Internet of Things. 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN), 2017. https://doi.org/10.1109/cicn.2017.8319379; https://www2.deloitte.com/insights/us/en/focus/signals-for-strategists/intelligent-iot-internet-of-things-artificial-intelligence.html

  28. A. Kott, A. Swami, B.J. West, The internet of battle things. Computer (IEEE) 49, 70–75 (2016)

    Article  Google Scholar 

  29. J. Rabkin, J. Yoo, Striking power: How cyber, robots, and space weapons change the rules for war (Encounter Books, New York, 2017).; Ian G.R. Shaw, Robot wars: US empire and geopolitics in the robotic age. Secur. Dialogue 48, 451–470 (2017)

    Google Scholar 

  30. A. Castiglione, K.-K. Raymond Choo, M. Nappi, S. Ricciardi, Context aware ubiquitous biometrics in edge of military things. IEEE Cloud Comput. 4(6), 16–20 (2017)

    Article  Google Scholar 

  31. https://publications.computer.org/cloud-computing/2018/03/22/internet-of-military-battlefield-things-iomt-iobt/

  32. N. Kumar, R. Kumar, Nanomaterials and Nanotechnology in Treatment of Life Threatening Diseases (Elseiver, Walthan, USA, 2013)

    Google Scholar 

  33. N. Kumar, S. Kumbhat, Essentials in Nanoscience and Nanotechnology (Wiley, Hoboken, 2016)

    Book  Google Scholar 

  34. l.A. Del Monte, Nano Weapons; a Growing Threat to Humanity (Potomac Books; An imprint of University of Nabraska, Lincoln, 2017)

    Book  Google Scholar 

  35. R.A. Freitas Jr., R.C. Merkle, Molecularly Precise Fabrication and Massively Parallel Assembly: The Two Keys to 21st Century Manufacturing, 28 October 2002; http://www.MolecularAssembler.com/Nanofactory/TwoKeys.htm; http://www.thenanoage.com/molecular-manufacturing.htm#assembler

  36. A. Currin, K. Korovin, M. Ababi, K. Roper, D.B. Kell, P.J. Day, R.D. King, Computing exponentially faster: Implementing a non-deterministic universal Turing machine using DNA. J R Soc Interface 14, e: 20160990 (2017)

    Article  Google Scholar 

  37. A. Ambainis, What can we do with a quantum computer? In the Institute for Advanced Study Spring Letter. https://www.ias.edu/ideas/2014/ambainis-quantum-computing (2014)

  38. E. Boysen, N.C. Muir, D. Dudley, Christine Peterson Nanotechnology for Dummies, 2nd edn. (Wiley, Dummies a Wiley Brand, 2011); https://web.archive.org/web/20130830195018/http://www.darpa.mil/Our_Work/TTO/Programs/Transformer_%28TX%29.aspx

  39. V.M.N. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, C.E. Campanella, Gyroscope technology and applications: A review in the industrial perspective. Sensors 17, 2284–1-22 (2017)

    Article  Google Scholar 

  40. https://defense-update.com/20180603_blackhornet.html

  41. https://phys.org/news/2011-02-robot-hummingbird-flight-video.html

  42. https://www.revolvy.com/page/Improved-Outer-Tactical-Vest

  43. C. Baker, D. Prieto, Application of carbon nanotubes to kevlar fabric for use in body armor (2017). 2017 Undergraduate Research. http://digitalcommons.mtech.edu/urp_aug_2017/1; https://www.forbes.com/2010/07/31/textiles-carbon-nanotubes-technology-nanocomp.html#2c5f4b503ec1; http://www.miralon.com/blog

  44. http://pubs.acs.org/cen/science/87/8730sci1html;S.L. Rovner, 21st-Century Armor, The increasingly sophisticated successor to an ancient material—ceramic—is saving lives on today’s battlefields. Chem. Eng. News 87, 51–53 (2009)

    CAS  Google Scholar 

  45. J.R. Barash, S.S. Arnon, A novel strain of clostridium botulinum that produces type B and type H botulinum toxins. J. Infect. Dis. 209, 183–191 (2014). https://doi.org/10.1093/infdis/jit449

    Article  CAS  Google Scholar 

  46. https://phys.org/news/2017-12-laser-driven-technique-fusion.html

  47. https://www.dailymail.co.uk/sciencetech/article-4330776/Insect-size-robot-weapons-render-humanity-EXTINCT.html; https://www.networkworld.com/

  48. https://www.roboticsbusinessreview.com/unmanned/small-drones-military-surveillance/

  49. https://www.huffingtonpost.com/entry/are-nanoweapons-paving-the-road-to-human-extinction_us_59332a52e4b00573ab57a3fe

  50. https://www.government-fleet.com/305416/nano-drone-built-for-law-enforcement-and-military

  51. D. Falaridge et al., Foldable drones. IEEE Robot. Autom. Lett. 4, 209–216 (2019)

    Article  Google Scholar 

  52. https://www.newscientist.com/article/2178470-the-us-army-is-making-a-laser-powered-drone-that-can-fly-indefinitely/

  53. A.C. Atre, A. García-Etxarri, H. Alaeian, J.A. Dionne, A broadband negative index metamaterial at optical frequencies. Adv. Opt. Mater. 1, 327–333 (2013). https://doi.org/10.1002/adom.201200022

    Article  Google Scholar 

  54. L. Romero Cortés, M. Seghilani, R. Maram, J. Azaña, Full-field broadband invisibility through reversible wave frequency-spectrum control. Optica 5, 779 (2018). https://doi.org/10.1364/optica.5.000779

    Article  CAS  Google Scholar 

  55. L.R. Cortés, M. Seghilani, R. Maram, J. Azaña, Full-field broadband invisibility through reversible wave frequency-spectrum control. Optica 5, 779–786 (2018). and https://newatlas.com/spectral-cloaking-invisibility/55271/

    Article  Google Scholar 

  56. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010)

    Google Scholar 

  57. S. Imre, F. Balazs, Quantum Computing and Communications: An Engineering Approach (Wiley, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N., Dixit, A. (2019). Role of Nanotechnology in Futuristic Warfare. In: Nanotechnology for Defence Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-29880-7_8

Download citation

Publish with us

Policies and ethics