Skip to main content

Nanotechnology-Driven Explosives and Propellants

  • Chapter
  • First Online:
Nanotechnology for Defence Applications

Abstract

The turning point in the history of armaments was the discovery and the realization that gun powder can be used in warfare. A variety of armaments, starting from small firearms, cannons, artillery guns, grenades to missiles, and propellants and explosives, have been developed and used in various small and big wars from different types of ground, aerial, and naval platforms over time. Propellants in solid, liquid, and gel forms have been developed to propel missiles, rockets as well as space crafts. Explosives, on the other hand, are mostly developed in a solid state exhibiting moderate to severe degree of devastation. Nanomaterials and nanotechnology are now finding a prominent space in the area of propellants and explosives, in both the cases to enhance their propulsion and devastation capabilities, respectively. Nanometals such as nano-Al and nano-B clusters have emerged as powerful explosive ingredients, whereas nanothermites have proven to act as very effective and safe nanoenergy materials (nEMs) for explosives and propellants. Furthermore, polymer-bonded nanoexplosives are considered for their safe handling including storage and transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://en.wikipedia.org/wiki/History_of_gunpowder

  2. J.P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics (Wiley-VCH Verlag GmbH & Co, Weinheim, 2010). KGaA(ISBN:9783527326105)

    Book  Google Scholar 

  3. https://www.ucsusa.org/nuclear-weapons/how-do-nuclear-weapons-work

  4. https://en.wikipedia.org/wiki/Hand_cannon

  5. https://en.wikipedia.org/wiki/Roger_Bacon

  6. https://www.acs.org/content/dam/acsorg/events/popular-chemsitry/Slides/2011-12-08-chemistry-fireworks.pdf

  7. https://en.wikipedia.org/wiki/Pyrotechnic_composition

  8. W.L. Bell, Chemistry of air bags. J. Chem. Educ. 67, 61 (1990)

    Article  CAS  Google Scholar 

  9. H. Cutler, E. Spector, Air bags and automobile recycling. ChemTech 23, 54–55 (1993)

    Google Scholar 

  10. J.A. Conkling, Pyrotechnics. Sci. Am. 263, 96–105 (1990)

    Article  CAS  Google Scholar 

  11. https://www.compoundchem.com/2014/11/04/sparklers/

  12. F.J. Arnáiz, R. Aguado, S. Arnáiz, Microscale thermite reaction. J. Chem. Educ. 75, 1630 (1998)

    Article  Google Scholar 

  13. https://wikivisually.com/wiki/Calcium_disilicide

  14. https://mysite.du.edu/~jcalvert/phys/bang.htm

  15. W.F. Kieffer, J.M. Resko, Colored signal smokes. J. Chem. Educ. 22, 385 (1945)

    Article  CAS  Google Scholar 

  16. https://military.wikia.org/wiki/White_phosphorus

  17. https://en.wikipedia.org/wiki/Skywriting

  18. J.H. Shinn, S.A. Martins, P.L. Cederwall, Smokes and obscurants: A health and environmental effects data base assessment, UCID—20931, https://www.osti.gov/servlets/purl/6068996

  19. A.B. Ray, Production of colored smoke signals. Ind. Eng. Chem. 18, 10–17 (1926)

    Article  CAS  Google Scholar 

  20. J. Akhavan, The Chemistry of Explosives, 3rd edn. (RSC Publishing, Cambridge, 2011). (ISBN-10: 1849733309)

    Google Scholar 

  21. H. Ellern, Military and CivilianPyrotechnics (Chemical Publishing Company Inc., New York, 1968)

    Google Scholar 

  22. D.T. Bodeau, Chapter 9, Military Energetic Materials:Explosives and Propellants, in Occupational Health: The Soldier and the Industrial Base, ed. by P. David, C. G. Joel, (U. S. Army, Office of the Surgeon General, Washington, DC, 1993). (ASIN: B000O0EH32)

    Google Scholar 

  23. A. Davenas, Development of modern solid propellants. J. Propuls. Power 19, 1108–1128 (2003)

    Article  CAS  Google Scholar 

  24. H.F.R. Schoeyer, A.J. Schnorhk, P.A.O.G. Korting, P.J. van Lit, J.M. Mul, G.M.H.J.L. Gadiot, J.J. Meulenbrugge, High-performance propellants based on hydrazinium nitroformate. J. Propuls. Power 11, 856–869 (1995)

    Article  Google Scholar 

  25. G. Lengellé, J. Duterque, J.F. Trubert, Combustion of Solid Propellants, Paper presented at the RTO/VKI Special Course on Internal aerodynamics in solid rocket propulsion, held in Rhode-Saint-Genèse, Belgium, 27–31 May 2002, and published in RTO-EN-023, https://web.stanford.edu/~cantwell/AA283_Course_Material/Combustion_of_Solid_Propellants.pdf

  26. G.P. Sutton, O. Biblarz, Rocket Propulsion Elements, 7th edn., (Chapter 7) (John Wiley & Sons, Hoboken, 2001)

    Google Scholar 

  27. J. A. Kent (ed.), Riegel’s Handbook of Industrial Chemistry, Part 1, 9th edn. (Springer-Science+Business Media, New York, 1992)

    Google Scholar 

  28. P. Folly, P. Mader, Propellant chemistry. Chimia 58, 374–382 (2004)

    Article  CAS  Google Scholar 

  29. D. Frem, A reliable method for predicting the specific impulse of chemical propellants. J. Aerosp. Technol. Manag. 10, e3318 (2018). https://doi.org/10.5028/jatm.v10.945

    Article  CAS  Google Scholar 

  30. Table 1 in Space Handbook: Astronautics and its Applications, Report AD-A286 688, https://apps.dtic.mil/dtic/tr/fulltext/u2/a286688.pdf and Table 1 in Propellants from https://history.nasa.gov/conghand/propelnt.htm

  31. H.K. Ciezki, C. Kirchberger, A. Stiefel, P. Kröger, P. Caldas Pinto, J. Ramsel, K.W. Naumann, J. Hürttlen, U. Schaller, A. Imiolek, and V. Weiser, Overview on the German Gel Propulsion Technology Activities: Status 2017 and Outlook, 7th European Conference for Aeronautics and Space Sciences (EUCASS), https://www.eucass.eu/doi/EUCASS2017-253.pdf

  32. http://lem.ch.unito.it/didattica/infochimica/2008_Esplosivi/Classification.html and http://www.tracefireandsafety.com/VFRE-99/Recognition/High/high.htm

  33. http://en.citizendium.org/wiki/Explosives

  34. W.G Proud, Ignition and detonation in energetic materials: An introduction, STO-EN-AVT-214, https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-AVT-214/EN-AVT-214-03.pdf

  35. W.C. Davis, High explosives: The interaction of chemistry and mechanics. Los Alomos Science 2, 48–75, http://shepherd.caltech.edu/EDL/projects/JetA/reports/BillDavisHE.pdf

  36. K. Venkataramana, R.K. Singh, A. Deb, H.S. Kushwaha, Blast protection of infrastructure with fluid filled cellular polymer foam. Procedia Engineering 173, 547–554 (2017)

    Article  Google Scholar 

  37. J.A. Bumpus, A theoretical investigation of the ring strain energy, destabilization energy, and heat of formation of CL-20. Adv. Phys. Chem. 2012, 175146 (2012). https://doi.org/10.1155/2012/175146

    Article  CAS  Google Scholar 

  38. Report on “Safety and Performance Tests for the Qualification of Explosives (High Explosives, Propellants, and Pyrotechnics), Report No. MIL-STD-1741A (11 December 2001), http://everyspec.com/MIL-STD/MIL-STD-1700-1799/download.php?spec=MIL-STD-1751A.020891.PDF

  39. H.G. Ang, S. Pisharath, Energetic Polymers: Binders and Plasticizers for Enhancing Performance (Wiley-VCH, Weinheim, 2012)

    Google Scholar 

  40. A.Provatas, Characterization and binder studies of the energetic plasticizer – GLYN Oligomer, Report No. DST-TR-1422, https://pdfs.semanticscholar.org/6374/951485dfe9c22c5cd4b382a99db5ec7bcc98.pdf?_ga=2.106704011.928798363.1556041421-768172741.1556041421

  41. T. Cheng, Review of novel energetic polymers and binders–high energy propellantingredients for the new space race. Des. Monomers Polym. 22, 54–65 (2019)

    Article  CAS  Google Scholar 

  42. S. Bhattacharya, A. K. Agarwal, T. Rajagopalan, V. K. Patel (eds.), Nano-Energetic Materials (Springer, Singapore, 2019)

    Google Scholar 

  43. I. P. Borovinskaya, A. A. Gromov, E. A. Levashov, Y. M. Maksimov, A. S. Mukasyan, A. S. Rogachev (eds.), Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, History, Theory, Technology, and Products (Elsevier, Amsterdam, 2017)

    Google Scholar 

  44. C. Rossi, Al-based Energetic Nanomaterials, Design, Manufacturing, Properties and Applications, vol 2 (ISTE Ltd/John Wiley & Sons, Inc, London/Hoboken, 2015)

    Book  Google Scholar 

  45. V. E. Zarko, A. A. Gromov (eds.), Energetic Nanomaterials: Synthesis, Characterization and Applications (Elsevier, San Diego, 2016)

    Google Scholar 

  46. S. Kulshrestha, Nanotechnology Massive Potential to Disrupt Military Applications in Nanotechnology – Applications in the Navy. SP’s Military Year Book (2013), https://skulshrestha.net/2019/02/20/nanotechnology-massive-potential-to-disrupt-military-applications/

  47. S. Kulshrestha, Nanoenergetic Materials (nEMs) in Conventional Ammunition, https://www.claws.in/1571/nanoenergetic-materials-nems-in-conventional-ammunition-sanatan-kulshrestha.html

  48. https://en.wikipedia.org/wiki/Father_of_All_Bombs

  49. N.H. Yen, L.Y. Wang, Reactive metals in explosives. Propellants Explos. Pyrotech. 37, 143–155 (2012)

    Article  CAS  Google Scholar 

  50. R.W. Conner, D.D. Dlott, Comparing boron and aluminum nanoparticle combustion in teflonusing ultrafast emission spectroscopy. J. Phys. Chem. C 116, 2751–2760 (2012)

    Article  CAS  Google Scholar 

  51. T. G. Manning, N. M. Masoud, D.P. Thompson, J.R. Luman, B. Wehrman, K. K. Kuo, R.A. Yetter and H. A. Bruck, Report Effects of Nano-sized Energetic Ingredients in High Performance Solid Gun Propellants, https://apps.dtic.mil/dtic/tr/fulltext/u2/a481943.pdf

  52. H. Wang, G. Jian, J. B. DeLisio, and M. R. Zachariah, Microspheres Composite of Nano-Al and Nanothermite: An Approach to Better Utilization of Nanomaterials, 52nd Aerospace Science Meeting, 13–17 January 2014, National Harbor, Maryland, AIAA SciTech, AIAA 2014–0647

    Google Scholar 

  53. http://www.nanotech-now.com/products/nanonewsnow/issues/037/037.htm

  54. T.M. Tillotson, A.E. Gash, R.L. Simpson, L.W. Hrubesh, J.H. Satcher Jr., J.F. Poco, Nanostructured energetic materials using sol-gelmethodologies. J. Non-Cryst. Solids 285, 338–345 (2001)

    Article  CAS  Google Scholar 

  55. Nanoscale chemistry yields better explosives, https://str.llnl.gov/str/RSimpson.html

  56. Nanostructured Energetic Materials with Sol-gel Methods Alexander E. Gash, Joe H. Satcher Jr., Randall L. Simpson, Brady J. Clapsaddle, Report No. UCRL-PROC-201186

    Google Scholar 

  57. Kevin Ryan, The explosive nature of nanothermite, http://digwithin.net/2011/06/19/the-explosive-nature-of-nanothermite/

  58. T. Chen, W. Li, W. Jiang, G. Hao, L. Xiao, X. Ke, J. Liu, H. Gao, Preparation and characterization of RDX/BAMO-THF energetic nanocomposites. J. Energ. Mater. 36, 424–434 (2018)

    Article  CAS  Google Scholar 

  59. M. Fisher. In Situ Manufacturing of Polymer Nanocomposites for Energetic Applications, https://www.dsiac.org/resources/journals/dsiac/winter-2017-volume-4-number-1/situ-manufacturing-polymer-nanocomposites

  60. Reid, D., E. Petersen, and S. Seal. Development of Plateau Burning Composite Propellant for Ejection Seat CAD/PAD Systems CAD/PAD Technical Exchange Workshop, May 2016

    Google Scholar 

  61. S. Kulshrestha, Nanoenergetic Materials (nEMs) in Conventional Ammunition, http://www.indiandefencereview.com/nanoenergetic-materials-nems-in-conventional-ammunition/

  62. A. Prakash, A.V. McCormick, M.R. Zachariah, Tuning the Reactivity of Energetic Nanoparticles by Creation of a Core−Shell Nanostructure. Nano Letters 5, 1357–1360 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N., Dixit, A. (2019). Nanotechnology-Driven Explosives and Propellants. In: Nanotechnology for Defence Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-29880-7_3

Download citation

Publish with us

Policies and ethics