Abstract
Agent-based software attracts great interest in industry and research, the main reasons being the efficiency, robustness and complexity minimization of such multi-agent systems (MASs). In addition, the application possibilities are varied. This paper presents an overview of the different areas and topics in which MASs are used and specifically addresses the question of how MASs are used in supply chain management (SCM). For this purpose, the identified studies are classified in the supply chain planning matrix and gaps in research are subsequently identified.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allwood, J.M., Lee, J.-H.: The design of an agent for modelling supply chain network dynamics. Int. J. Prod. Res. 43(22), 4875–4898 (2005). https://doi.org/10.1080/00207540500168295
Bechtel, C., Jayaram, J.: Supply chain management: a strategic perspective. The Int. J. Logist. Manag. 8(1), 15–34 (1997)
Blackhurst, J., Craighead, C.W., Elkins, D., Handfield, R.B.: An empirically derived agenda of critical research issues for managing supply-chain disruptions. Int. J. Prod. Res. 43(19), 4067–4081 (2005). https://doi.org/10.1080/00207540500151549
Blos, M.F., da Silva, R.M., Wee, H.M.: A framework for designing supply chain disruptions management considering productive systems and carrier viewpoints. Int. J. Prod. Res. 56(15), 5045–5061 (2018)
Caridi, M., Cigolini, R., de Marco, D.: Improving supply-chain collaboration by linking intelligent agents to CPFR. Int. J. Prod. Res. 43(20), 4191–4218 (2005). https://doi.org/10.1080/00207540500142134
Chan, H.K., Chan, F.T.S.: Effect of information sharing in supply chains with flexibility. Int. J. Prod. Res. 47(1), 213–232 (2009). https://doi.org/10.1080/00207540600767764
Chan, H.K., Chan, F.T.S.: A review of coordination studies in the context of supply chain dynamics. Int. J. Prod. Res. 48(10), 2793–2819 (2010). https://doi.org/10.1080/00207540902791843
Chen, J.-C., Wang, K.-J., Wang, S.-M., Yang, S.-J.: Price negotiation for capacity sharing in a two-factory environment using genetic algorithm. Int. J. Prod. Res. 46(7), 1847–1868 (2008). https://doi.org/10.1080/00207540601008440
Chen, X.W., Nof, S.Y.: A decentralised conflict and error detection and prediction model. Int. J. Prod. Res. 48(16), 4829–4843 (2010). https://doi.org/10.1080/00207540903067201
Confessore, G., Corini, D., Stecca, G.: A computational method for pricing of delivery service in a logistics network. Int. J. Prod. Res. 46(5), 1231–1242 (2008). https://doi.org/10.1080/00207540701224285
Cooper, H., Valentine, J.C.: Research synthesis and meta-analysis. In: Handbook of Research on Adult Learning and Development, pp. 184–202. Routledge (2008)
Dai, H., Lin, J., Long, Q.: A fractal perspective-based methodological framework for supply chain modelling and distributed simulation with multi-agent system. Int. J. Prod. Res. 52(22), 6819–6840 (2014). https://doi.org/10.1080/00207543.2014.919414
Davidsson, P., Henesey, L., Ramstedt, L., Törnquist, J., Wernstedt, F.: An analysis of agent-based approaches to transport logistics. Transp. Res. Part C: Emerg. Technol. 13(4), 255–271 (2005). https://doi.org/10.1016/j.trc.2005.07.002
Enjalbert, S., Archimède, B., Charbonnaud, P.: Distributed simulation of virtual workshops for the multi-site scheduling feasibility evaluation. Int. J. Prod. Res. 49(22), 6663–6676 (2011). https://doi.org/10.1080/00207543.2010.520911
Ferber, J., Kirn, S.: Multiagentensysteme. Eine Einführung in die Verteilte Künstliche Intelligenz. Addison-Wesley (Agententechnologie), München (2001)
Fleischmann, B., Meyr, H., Wagner, M.: Advanced planning. In: Supply chain management and advanced planning, pp. 81–106. Springer (2005)
Franklin, S., Graesser, A.: Is it an agent, or just a program? A taxonomy for autonomous agents. In: 1996 Proceedings of the Third International Workshop on Agent Theories, Architectures, and Languages, pp. 21–35 (1996)
Ghirardi, M., Menga, G., Sacco, N.: An optimisation-oriented model of distributed supply-chain. Math. Comput. Simul. 79(4), 937–946 (2008)
Huang, G.Q., Lau, J.S.K., Mak, K.L., Liang, L.: Distributed supply-chain project rescheduling: part II—distributed affected operations rescheduling algorithm. Int. J. Prod. Res. 44(1), 1–25 (2006). https://doi.org/10.1080/00207540500151507
Huang, G.Q., Lau, J.S.K., Mak, K.L.: The impacts of sharing production information on supply chain dynamics: A review of the literature. Int. J. Prod. Res. 41(7), 1483–1517 (2003). https://doi.org/10.1080/0020754031000069625
Jain, V., Wadhwa, S., Deshmukh, S.G.: Select supplier-related issues in modelling a dynamic supply chain: potential, challenges and direction for future research. Int. J. Prod. Res. 47(11), 3013–3039 (2009). https://doi.org/10.1080/00207540701769958
Klügl, F.: Multiagentensystem. In: Görz, G., Schneeberger, J. (eds.) Handbuch der künstlichen Intelligenz, pp. 527–556. Walter de Gruyter (2012)
Lee, H.L., Billington, C.: Material management in decentralized supply chains. Oper. Res. 41(5), 835–847 (1993). https://doi.org/10.1287/opre.41.5.835
Li, J., Sheng, Z.: A multi-agent model for the reasoning of uncertainty information in supply chaleeins. Int. J. Prod. Res. 49(19), 5737–5753 (2011). https://doi.org/10.1080/00207543.2010.524257
Long, Q.: Distributed supply chain network modelling and simulation: integration of agent-based distributed simulation and improved SCOR model. Int. J. Prod. Res. 52(23), 6899–6917 (2014). https://doi.org/10.1080/00207543.2014.910623
Lu, T.P., Chang, T.M., Yih, Y.: Production control framework for supply chain management—an application in the elevator manufacturing industry. Int. J. Prod. Res. 43(20), 4219–4233 (2005)
Richard Martin, P., Patterson Wayne, J.: On measuring company performance within a supply chain. Int. J. Prod. Res. 47(9), 2449–2460 (2009). https://doi.org/10.1080/00207540701725604
Mishra, N., Kumar, V., Chan, F.T.S.: A multi-agent architecture for reverse logistics in a green supply chain. Int. J. Prod. Res. 50(9), 2396–2406 (2012). https://doi.org/10.1080/00207543.2011.581003
Nwana, H.S., Lee, L.C., Jennings, N.R.: Coordination in software agent systems. Br. Telecom Tech. J. 14(4), 79–88 (1996)
Ogier, M., Chan, F.T.S., Chung, S.H., Boissière, J.: Decentralised capacitated planning with minimal-information sharing in a 2-echelon supply chain. Int. J. Prod. Res. 23(16), 4927–4950 (2015). https://doi.org/10.1080/00207543.2015.1005763
Ogier, M., Cung, V.-D., Boissière, J., Chung, S.: Decentralised planning coordination with quantity discount contract in a divergent supply chain. Int. J. Prod. Res. 51(9), 2776–2789 (2013). https://doi.org/10.1080/00207543.2012.737951
Parunak, H.V.D.: Agents in overalls: experiences and issues in the development and deployment of industrial agent-based systems. Int. J. Coop. Inf. Syst. 9(03), 209–227 (2000)
Rohde, J., Meyr, H., Wagner, M.: Die supply chain planning matrix. Darmstadt Technical University, Department of Business Administration (2000)
Rosas, J., Camarinha-Matos, L.M.: An approach to assess collaboration readiness. Int. J. Coop. Inf. Syst. 47(17), 4711–4735 (2009). https://doi.org/10.1080/00207540902847298
Shukla, N., Kiridena, S.: A fuzzy rough sets-based multi-agent analytics framework for dynamic supply chain configuration. Int. J. Coop. Inf. Syst. 54(23), 6984–6996 (2016). https://doi.org/10.1080/00207543.2016.1151567
Wang, X.H., Wong, T.N., Wang, G.: Knowledge representation for multi-agent negotiations in virtual enterprises. Int. J. Coop. Inf. Syst. 49(14), 4275–4297 (2011). https://doi.org/10.1080/00207543.2010.518996
Wooldridge, M.: An Introduction to Multiagent Systems. Wiley (2009)
Xu, L.D.: Information architecture for supply chain quality management. Int. J. Coop. Inf. Syst. 49(1), 183–198 (2011). https://doi.org/10.1080/00207543.2010.508944
Yu, C., Wong, T.N., Li, Z.: A hybrid multi-agent negotiation protocol supporting supplier selection for multiple products with synergy effect. Int. J. Coop. Inf. Syst. 55(1), 18–37 (2017a). https://doi.org/10.1080/00207543.2016.1189105
Yu, Y., Cao, R.Q., Schniederjans, D.: Cloud computing and its impact on service level: a multi-agent simulation model. Int. J. Coop. Inf. Syst. 55(15), 4341–4353 (2017b). https://doi.org/10.1080/00207543.2016.1251624
Zhang, L., Wang, S., Li, F., Wang, H., Wang, L., Tan, W.: A few measures for ensuring supply chain quality. Int. J. Coop. Inf. Syst. 49(1), 87–97 (2011a). https://doi.org/10.1080/00207543.2010.508965
Zhang, X., Lu, Q., Wu, T.: Petri-net based applications for supply chain management: an overview. Int. J. Prod. Res. 49(13), 3939–3961 (2011b)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fiedler, A., Sackmann, D., Haasis, HD. (2019). A Literature Review on the State of the Art of Multi-agent Systems in Supply Chain Management. In: Bierwirth, C., Kirschstein, T., Sackmann, D. (eds) Logistics Management. Lecture Notes in Logistics. Springer, Cham. https://doi.org/10.1007/978-3-030-29821-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-29821-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29820-3
Online ISBN: 978-3-030-29821-0
eBook Packages: Economics and FinanceEconomics and Finance (R0)