Skip to main content

Polymer Solutions

  • Chapter
  • First Online:
Fundamental Polymer Science

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Chapter 4 deals with the thermodynamics of polymer solutions, i.e. a polymer dissolved in a low molar mass solvent, a low molar mass substance swelling a solid polymer and polymer blends. A starting point is the regular solution model, which is used as a vehicle to explain a number of fundamental concepts: phase separation, binodal points, spinodal decomposition, critical points (UCST and LCST), chemical potential issues, etc. The Flory-Huggins model (being a polymer version of the regular solution model) including its limitations is comprehensively discussed. The solubility parameter concept originating from the work of Hildebrand and Scatchard and also the more recent Hansen parameter model, the scaling law models according to des Cloiseaux and de Gennes, and the equation-of-state models are covered. The morphology of polymer blends based on both thermodynamics and the kinetics is discussed in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeyrathne, E. D. N. S., Lee, H. Y., & Ahn, D. U. (2013). Poultry Science, 92, 3292.

    Article  Google Scholar 

  • Adhikari, R. (2014). Electron microscopic analysis of multicomponent polymers and blends, Chapter 17. In S. Thomas, Y. Grohens, & P. Jyotishkumar (Eds.), Characterization of polymer blends: Miscibility, morphology and interfaces. Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Barton, A. F. M. (1983). Handbook of solubility parameters and other cohesion parameters (1st ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Barton, A. F. M. (1991). Handbook of solubility parameters and other cohesion parameters (1st ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Bicerano, J. (1993). Prediction of polymer properties. New York: Marcel Dekker.

    Google Scholar 

  • Binder, K. (1983). The Journal of Chemical Physics, 79, 6387.

    Article  ADS  Google Scholar 

  • Boyd, R. H., & Phillips, P. J. (1993). The science of polymer molecules. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bucknall, D. G., & Arrighi, V. (2000) Neutron scattering and polymer Blends, in Polymer Blends Volume 1. Formulation and performance; Eds. D.R. Paul and C.B. Buchnall. New York, Wiley.

    Google Scholar 

  • Cahn, J. W. (1968). Transactions of the Metallurgical Society of AIME, 242, 166.

    Google Scholar 

  • Cahn, J. W., & Hilliard, J. E. (1958). The Journal of Chemical Physics, 28, 258.

    Article  ADS  Google Scholar 

  • Chapman, W. G., Gubbins, K. E., Jackson, G., & Radosz, M. (1990). Industrial and Engineering Chemistry Research, 29, 1709.

    Article  Google Scholar 

  • Cong, G., Huang, Y., MacKnight, W. J., & Karasz, F. E. (1986). Macromolecules, 19, 2765.

    Article  ADS  Google Scholar 

  • De Angelis, M. G., Sarti, G. C., & Doghieri, F. (2007). Journal of Membrane Science, 289, 106.

    Article  Google Scholar 

  • de Gennes, P. G., Pincus, P., Velasco, R. M., & Brochard, F. (1976). Journal de Physique, 37, 1461.

    Google Scholar 

  • de Gennes, P. G. (1979). Scaling concepts in polymers. Ithaca and New York: Cornell University Press.

    Google Scholar 

  • de Gennes, P. G. (1980). The Journal of Chemical Physics, 72, 4756.

    Article  ADS  MathSciNet  Google Scholar 

  • Dee, G. T., & Walsh, D. J. (1988a). Macromolecules, 21, 811.

    Article  ADS  Google Scholar 

  • Dee, G. T., & Walsh, D. J. (1988b). Macromolecules, 21, 815.

    Article  ADS  Google Scholar 

  • des Cloizeaux, J. (1975). Journal of Physics (Paris), 36, 281.

    Article  Google Scholar 

  • des Cloizeaux, J., & Jannink, G. (1990). Polymer in solution: Their modelling and structure. Oxford: Clarendon Press.

    Google Scholar 

  • Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C. M., Wepf, R., Bunk, O., & Pfeiffer, F. (2010). Nature, 467, 436.

    Article  ADS  Google Scholar 

  • Doghieri, F., & Sarti, G. C. (1996). Macromolecules, 29, 7885.

    Article  ADS  Google Scholar 

  • Doghieri, F., & Sarti, G. C. (1998). Journal of Membrane Science, 147, 73.

    Article  Google Scholar 

  • Eichinger, B. E., & Flory, P. J. (1968). Transactions of the Faraday Society, 64, 2035, 2053, 2061, 2066.

    Article  Google Scholar 

  • Einstein, A. (1906). Annalen der Physik, 19, 289.

    Article  ADS  Google Scholar 

  • Freed, K. F., & Dudowicz, J. (1995). Modern Trends in Polymer Science, 3, 248.

    Google Scholar 

  • Flory, P. J. (1942). The Journal of Chemical Physics, 10, 51.

    Article  ADS  Google Scholar 

  • Flory, P. J. (1953). Principles of polymer chemistry. Ithaca and London: Cornell University Press.

    Google Scholar 

  • Flory, P. J. (1970). Discussions of the Faraday Society, 49, 7.

    Article  Google Scholar 

  • Flory, P. J., Orwoll, R. A., & Vrij, A. (1964). Journal of the American Chemical Society, 86(3507), 3515.

    Article  Google Scholar 

  • Fox, T. G. (1956). Bulletin of the American Physical Society, 1, 123.

    Google Scholar 

  • Gedde, U. W. (2020). Essential classical thermodynamics. Springer Nature, Berlin and New York.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020a). Applied polymer science. Berlin and New York: Springer Nature; Chapters 3 and 4.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020b). Applied polymer science. Berlin and New York: Springer Nature; Chapter 3.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020c). Applied polymer science. Berlin and New York: Springer Nature; Chapter 5.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020d). Applied polymer science. Berlin and New York: Springer Nature; Chapters 1–3.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020e). Applied polymer science. Berlin and New York: Springer Nature; Chapter 1.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020f). Applied polymer science. Berlin and New York: Springer Nature; Chapter 2.

    Google Scholar 

  • Ghonasgi, D., & Chapman, W. G. (1994). The Journal of Chemical Physics, 100, 6633.

    Article  ADS  Google Scholar 

  • Graessley, W. W. (2004). Polymeric liquids and networks: Structure and properties. London: Garland Science.

    Google Scholar 

  • Gross, J., & Sadowski, G. (2001). Industrial and Engineering Chemistry Research, 40, 1244.

    Article  Google Scholar 

  • Gustafsson, A., Salot, R., & Gedde, U. W. (1993). Polymer Composites, 14, 421.

    Article  Google Scholar 

  • Hansen, C. M. (1967) Three-dimensional solubility parameters and solvent diffusion coefficient. Importance in surface coating formulation. Doctoral dissertation, Danish Technical Press, Copenhagen.

    Google Scholar 

  • Hansen, C. M. (2000). Hansen solubility parameters: A user’s handbook (1st ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Hansen, C. M. (2007). Hansen solubility parameters: A user’s handbook (2nd ed.). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Hartmann, B., & Haque, M. A. (1985). Journal of Applied Polymer Science, 30, 1553.

    Article  Google Scholar 

  • Hiemenz, P. C. (1986). Principles of colloid and surface chemistry. New York and Basel: Marcel Dekker.

    Google Scholar 

  • Hildebrand, J. H. (1936). The solubility of non-electrolytes (2nd ed.). New York: Reinhold.

    Google Scholar 

  • Hildebrand, J. H., & Scott, R. L. (1950). The solubility of non-electrolytes (3rd ed.). New York: Reinhold.

    Google Scholar 

  • Hildebrand, J. H., & Wood, S. E. (1933). The Journal of Chemical Physics, 1, 817.

    Article  ADS  Google Scholar 

  • Hillert, M. (1955) A theory of nucleation for solid metallic solutions. Ph.D.: Thesis, Massachusetts Institute of Technology, USA.

    Google Scholar 

  • Hillert, M. (1961). Acta Materialia, 9, 525.

    Article  Google Scholar 

  • Hobbs, S. Y., & Watkins, V. H. (1999). Morphology characterization by microcopy techniques, Chapter 9. In D. R. Paul & C. B. Bucknall (Eds.), Polymer blends. Volume 1: Formulation. New York: Wiley.

    Google Scholar 

  • Holten-Andersen, J., Fredenslund, A., Rasmussen, P., & Carvoli, G. (1986). Fluid Phase Equilibria, 29, 357.

    Article  Google Scholar 

  • Hourston, D. J., & Song, M. (2006). Application of modulated differential scanning calorimetry to polymer blends and related systems, Chapter 3. In M. Reading & D. J. Hourston (Eds.), Modulated-temperature differential scanning calorimetry: Theoretical and practical applications in polymer characterization. Dordrecht: Springer.

    Google Scholar 

  • Hoy, K. L. (1970). Journal of Paint Technology, 42, 76.

    Google Scholar 

  • Huggins, M. L. (1942a). Annals of the New York Academy of Sciences, 41, 1.

    Article  ADS  Google Scholar 

  • Huggins, M. L. (1942b). The Journal of Chemical Physics, 46, 151.

    Article  Google Scholar 

  • Huggins, M. L. (1942c). Journal of the American Chemical Society, 64, 1712.

    Article  Google Scholar 

  • Inoue, T., & Kyu, T. (1999). Optical characterization: light scattering, birefringence and ellipsometry. Chapter 11. In D. R. Paul & C. B. Bucknall (Eds.), Polymer blends. Volume 1: Formulation. New York: Wiley.

    Google Scholar 

  • Israelachvili, J. (1992). Intermolecular and surface forces (2nd ed.). London: Academic Press.

    Google Scholar 

  • Katchalsky, A. (1954). Journal of Polymer Science, 12, 159.

    Article  ADS  Google Scholar 

  • Keyes, D. B., & Hildebrand, J. H. (1917). Journal of the American Chemical Society, 39, 2120.

    Google Scholar 

  • Khaliq, A., Lambert, A., Mundakkal, A., & Shoaib, D. (2017). Semantic scholar. The Science of Cooking Eggs. Seattle, USA: Allen Institute for Artificial Intelligence.

    Google Scholar 

  • King, J. S., Boyer, W., Wignall, G. D., & Ullmann, R. (1985). Macromolecules, 18, 709.

    Article  ADS  Google Scholar 

  • Koningsveld, R., Kleintjens, L. A., & Leblans-Vinckl, A. (1987). The Journal of Physical Chemistry, 91, 6423.

    Article  Google Scholar 

  • Koningsveld, R., Stockmayer, W. H., & Nies, E. (2001). Polymer phase diagrams. Oxford: Oxford University Press.

    Google Scholar 

  • Kontogeorgis, G. M., & Folas, G. K. (2010). Thermodynamic models for industrial applications: From classical and advanced mixing rules to association theories. Chichester: Wiley.

    Book  Google Scholar 

  • Lacombe, R. H., & Sancher, I. C. (1976). Journal of Physical Chemistry, 80, 2568.

    Google Scholar 

  • Lennard-Jones J. E., & Devonshire, A. F. (1937). Proceedings of the Royal Society A, 163, 53.

    Google Scholar 

  • Lennard-Jones J. E. & Devonshire, A. F. (1938). Proceeding of the Royal Society A, 165, 1.

    Google Scholar 

  • Manning, G. S. (1967). The Journal of Physical Chemistry, 47, 2010.

    Article  ADS  Google Scholar 

  • McCabe, C., & Galindo, A. (2010). SAFT associating fluids and fluid mixtures, Chapter 8. In A. R. H. Goodwin, J. V. Sengers, & C. J. Peters (Eds.), Applied thermodynamics of fluids. Cambridge: IUPAC and Royal Society of Chemistry.

    Google Scholar 

  • Merfeld, G. D., & Paul, D. R. (1999). Polymer-polymer interactions based on mean field approximations, Chapter 3. In D. R. Paul & C. B. Bucknall (Eds.), Polymer blends. Volume 1: Formulation. New York: Wiley.

    Google Scholar 

  • Metelkin, V. I., & Blekht, V. S. (1984). Kolloid Zh., 46, 476.

    Google Scholar 

  • Miles, I. S., & Rostami, S. (1992). Multicomponent polymer systems. Harlow: Longman.

    Google Scholar 

  • Miller–Chou, B. A., & Koenig, J. L. (2003). Progress in Polymer Science, 28, 1223.

    Article  Google Scholar 

  • Min, B. S., & Ko, S. W. (2007). Macromolecular Research, 15, 225.

    Article  Google Scholar 

  • Mine, Y., Noutomi, T., & Haga, N. (1990). Journal of Agricultural and Food Chemistry, 38, 2122.

    Article  Google Scholar 

  • Morawetz, H. (1965). Polymers – The origins and growth of a science. New York: Wiley-Interscience.

    Google Scholar 

  • Nilsson, F., & Hedenqvist, M. S. (2011). Mass transport and barrier properties of food packaging polymers, Chapter 6. In J.-M. Lagaron (Ed.), Multifunctional and nanoreinforced polymers for food packaging. Sawstone: Woodhead Publ..

    Google Scholar 

  • Nilsson, F., Hallstensson, K., Johansson, K., Umar, Z., & Hedenqvist, M. S. (2012). Industrial and Engineering Chemistry Research, 52, 8655.

    Article  Google Scholar 

  • Nishi, T., & Kwei, T. K. (1975). Polymer, 16, 285.

    Article  Google Scholar 

  • Noda, I., Kato, N., Kitano, T., & Nagasawa, M. (1981). Macromolecules, 14, 668.

    Article  ADS  Google Scholar 

  • Odijk, T. (1977). Journal of Polymer Science, Polymer Physics Edition, 15, 477.

    Article  ADS  Google Scholar 

  • Odijk, T. (1979). Macromolecules, 12, 688.

    Article  ADS  Google Scholar 

  • Padilha Júnior, E. J., de Pelegrini Soares, R., & Medeiros Cardozo, N. S. (2015). Polímeros, 25, 277.

    Article  Google Scholar 

  • Painter, P. C., & Coleman, M. M. (1999). Hydrogen bonding systems, Chapter 4. In D. R. Paul & C. B. Bucknall (Eds.), Polymer blends. Volume 1: Formulation. New York: Wiley.

    Google Scholar 

  • Paul, D. R., & Barlow, J. W. (1980). Journal of Macromolecular Science – Reviews in Macromolecular Chemistry and Physics, C18, 109.

    Article  Google Scholar 

  • Paul, D. R., & Bucknall, C. B. (Eds.). (1999). Polymer blends. Volume 1: Formulation. New York: Wiley.

    Google Scholar 

  • Pedrosa, N., Vega, L. F., Coutinho, J. A. P., & Marrucho, I. M. (2006). Macromolecules, 39, 4240.

    Article  ADS  Google Scholar 

  • Peng, D. Y., & Robinson, D. B. (1976). Industrial and Engineering Chemistry Fundamentals, 15, 59.

    Article  Google Scholar 

  • Peng, Y., & Wang, X. (2018). Journal of Pharmaceutical and Biomedical Analysis, 160, 383.

    Article  Google Scholar 

  • Prigogine, I., Trappeniers, N., & Mathot, V. (1953). Discussions of the Faraday Society, 15, 93.

    Article  Google Scholar 

  • Prigogine, I., Bellemans, A., & Mathot, V. (1957). The Moecular theory of solutions. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Ramanathan, M., & Darling, S. B. (2014). Optical microscopy (polarized, interference and phase-contrast) and confocal microscopy, Chapter 16. In S. Thomas, Y. Grohens, & P. Jyotishkumar (Eds.), Characterization of polymer blends: Miscibility, morphology and interfaces. Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Raul, J. (2014). European Physical Journal E: Soft Matter and Biological Physics, 37, 113.

    Article  Google Scholar 

  • Roberts, C. J. (2014). Current Opinion in Biotechnology, 30, 211.

    Article  Google Scholar 

  • Rodgers, P. A. (1993). Journal of Applied Polymer Science, 48, 1061.

    Article  Google Scholar 

  • Rodriguez-Parada, J. M., & Percec, V. (1984a). Macromolecules, 19, 55.

    Article  ADS  Google Scholar 

  • Rodriguez-Parada, J. M., & Percec, V. (1984b). Journal of Polymer Science, Polymer Physics Edition, 24, 579.

    Article  ADS  Google Scholar 

  • Roe, R. J., & Zin, W. C. (1980). Macromolecules, 13, 1221.

    Article  ADS  Google Scholar 

  • Rostami, S. (1992). Polymer-polymer blends, Chapter 3. In I. S. Miles & S. Rostami (Eds.), Multicomponent polymer systems. Harlow: Longman.

    Google Scholar 

  • Rubinstein, M., & Colby, R. H. (2003). Polymer physics. Oxford: Oxford University Press.

    Google Scholar 

  • Saeki, S., Kuwahara, S., Konno, S., & Kaneko, M. (1975). Macromolecules, 6, 246.

    Article  ADS  Google Scholar 

  • Sakurada, I., Nakajima, A., & Fujiwara, H. (1959). Journal of Polymer Science, 35, 497.

    Article  ADS  Google Scholar 

  • Sanchez, I. C., & Lacombe, R. H. (1978). Macromolecules, 11, 1145.

    Article  ADS  Google Scholar 

  • Sanchez, I. C., & Stone, M. T. (1999). Statistical thermodynamics of polymer solutions and blends, Chapter 2. In D. R. Paul & C. B. Bucknall (Eds.), Polymer blends. Volume 1: Formulation. New York: Wiley.

    Google Scholar 

  • Scatchard, G. (1931). Chemical Reviews, 8, 321.

    Article  Google Scholar 

  • Schultz, G. V., & Doll, H. (1952). Zeitscrift für Elektrochemie, 56, 248.

    Google Scholar 

  • Schultz, A. R., & Flory, P. J. (1952). Journal of the American Chemical Society, 74, 4760.

    Article  Google Scholar 

  • Schwan, D., Janssen, S., & Springer, T. (1992). The Journal of Chemical Physics, 97, 8775.

    Article  ADS  Google Scholar 

  • Schweizer, K. S., & Curro, J. G. (1997). Advances in Chemical Physics, 98, 1.

    Google Scholar 

  • Sharma, J. (2014). Characterization of polymer blends by X-ray scattering: SAXS and WAXS, Chapter 6. In S. Thomas, Y. Grohens, & P. Jyotishkumar (Eds.), Characterization of polymer blends: Miscibility, morphology and interfaces. Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Simha, R., & Somcynsky, T. (1969). Macromolecules, 2, 342.

    Article  ADS  Google Scholar 

  • Small, P. A. (1953). Journal of Applied Chemistry, 3, 71.

    Article  Google Scholar 

  • Soave, G. (1972). Chemical Engineering Science, 27, 1197.

    Article  Google Scholar 

  • Strobl, G. (1997). Polymer physics (2nd ed., pp. 107–140). Heidelberg, Berlin and New York: Springer.

    Book  Google Scholar 

  • Subramanian, R. T. (2014). Thermal analysis of polymer blends, Chapter 11. In S. Thomas, Y. Grohens, & P. Jyotishkumar (Eds.), Characterization of polymer blends: Miscibility, morphology and interfaces. Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Sun, S. F. (1994). Physical chemistry of macromolecules. New York: Wiley.

    Google Scholar 

  • Svoboda, P. (2014). Characterization of phase behavior in polymer blends by light scattering, Chapter 5. In S. Thomas, Y. Grohens, & P. Jyotishkumar (Eds.), Characterization of polymer blends: Miscibility, morphology and interfaces. Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Tait, P. G. (1888). Physical Chemistry, 2, 1.

    Google Scholar 

  • Thomas, S., Grohens, Y., & Jyotishkumar, P. (Eds.). (2014). Characterization of polymer blends: Miscibility, morphology and interfaces. Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Tihic, A., Kontogeorgis, G. M., von Solms, N., & Michelsen, M. L. (2008). Industrial and Engineering Chemistry Research, 47, 5092.

    Article  Google Scholar 

  • Utracki, L. A. (1989). Polymer alloys and blends: Thermodynamics and rheology. Munich: Hanser.

    Google Scholar 

  • Utracki, L. A. (2000). Polymer blends, Rapra review reports 11, no. 6. Shawbury: RAPRA Technology Ltd.

    Google Scholar 

  • Utracki, L. A., & Jukes, J. A. (1984). Journal of Vinyl Technology, 6, 85.

    Article  Google Scholar 

  • Van Krevelen, D. W. (1972). Properties of Polymers, Elsevier, New York.

    Google Scholar 

  • Van Krevelen, D. W., & Te Nijenhuis, K. (2009). Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions (4th ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Van Laar, J. J. (1910). Zeitschrift für Physikalische Chemie, 72, 723.

    Google Scholar 

  • von Solms, N., Michelsen, M. L., & Kontogeorgis, G. M. (2005). Industrial and Engineering Chemistry Research, 44, 3330.

    Article  Google Scholar 

  • Walker, J. S., & Vouse, C. A. (1982). American Society of Mechanical Engineers, 1, 411.

    Google Scholar 

  • Wei, Y. S., & Sadus, R. J. (2000). 2000. AICHE Journal, 46, 169.

    Article  Google Scholar 

  • Wertheim, M. S. (1984a). Journal of Statistical Physics, 35, 19.

    Article  ADS  MathSciNet  Google Scholar 

  • Wertheim, M. S. (1984b). Journal of Statistical Physics, 35, 35.

    Article  ADS  MathSciNet  Google Scholar 

  • Wertheim, M. S. (1986a). Journal of Statistical Physics, 42, 455.

    ADS  MathSciNet  Google Scholar 

  • Wertheim, M. S. (1986b). Journal of Statistical Physics, 42, 477.

    Article  ADS  MathSciNet  Google Scholar 

  • Yuan, Z., Ormonde, C. F. G., Kudlacek, S. T., Kunche, S., Smith, J. N., Brown, W. A., Pugliese, K. M., Olsen, T. J., Iftikhar, M., Raston, C. L., & Weiss, G. A. (2015). Chembiochem, 16, 393.

    Article  Google Scholar 

  • Zoller, P., & Walsh, D. J. (1995). Standard pressure-volume-temperature data for polymers. Lancaster: Technomic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedde, U.W., Hedenqvist, M.S. (2019). Polymer Solutions. In: Fundamental Polymer Science. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-29794-7_4

Download citation

Publish with us

Policies and ethics