Skip to main content

Rubber Elasticity

  • Chapter
  • First Online:
Fundamental Polymer Science

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Rubbers are lightly cross-linked amorphous polymers with a glass transition temperature considerably lower than the usage temperature. The elasticity of rubbers is predominantly entropy-driven which leads to several remarkable phenomena: the stiffness increases with increasing temperature and heat is reversibly generated by mechanical work done on the rubber; a deformed piece of rubber is warm and, on unloading, temperature drops instantaneously. A more detailed analysis shows that the elastic force originates from both changes in conformational entropy and changes in the internal energy. The latter are normally small and at constant volume, it relates to changes in conformational energy. Statistical mechanical models equating the Helmholtz free energy are useful in describing the stress-strain behaviour of rubbers. The affine network model assumes that the network consists of phantom Gaussian chains, and that the positions of the junction points are fixed and prescribed by the macroscopic deformation. The phantom network model assumes that the positions of the junctions fluctuate about their mean positions prescribed by the macroscopic deformation ratio. This constrain is achieved by giving some of the crosslinks a precise position according to the macroscopic deformation. The non-Gaussian chain statistics limiting the extensibility of the network and network “defects” such as loose chain ends, intramolecular crosslinks and trapped entanglements (e.g. according to the Langley method) are thoroughly treated. Other topics presented are the very useful Mooney equation, the effect of solvents on the stress-strain behaviour expressed by the Flory-Rehner equation and rubbers present in nature and in biological systems, viz. protein rubbers and hydrogels based on polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, G., Bianchi, U., & Price, C. (1963). Transactions of the Faraday Society, 59, 2493.

    Article  Google Scholar 

  • Allen, G., Kirkham, M. J., Padget, J., & Price, C. (1971). Transactions of the Faraday Society, 67, 1278.

    Article  Google Scholar 

  • Anthony, P. C., Caston, R. H., & Guth, E. (1942). The Journal of Physical Chemistry, 46, 826.

    Article  Google Scholar 

  • Boyd, R. H., & Phillips, P. J. (1993). The science of polymer molecules. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • British Standard 903–5. (2004). Guide to the application of rubber testing to finite element analysis. London: BSI Group.

    Google Scholar 

  • Brown, R. (2017). Physical test methods for elastomers. Cham: Springer International Publ. AG.

    Google Scholar 

  • Case, L. C. (1960). Journal of Polymer Science, 45, 397.

    Article  ADS  Google Scholar 

  • Chen, Z., Cohen, C., & Escobedo, F. A. (2002). Macromolecules, 35, 3296.

    Article  ADS  Google Scholar 

  • Davis, E. (1993). Journal of Histochemistry, 100, 17.

    Article  Google Scholar 

  • Dossin, L. M., & Graessley, W. W. (1979). Macromolecules, 12, 123.

    Article  ADS  Google Scholar 

  • Duering, E. R., Kremer, K., & Grest, G. S. (1994). The Journal of Chemical Physics, 101, 8169.

    Article  ADS  Google Scholar 

  • Elliot, D. A., & Lippmann, S. A. (1945). Journal of Applied Physics, 16, 50.

    Article  ADS  Google Scholar 

  • Erman, B., & Flory, P. J. (1978). The Journal of Chemical Physics, 68, 5363.

    Article  ADS  Google Scholar 

  • Erman, B., & Mark, J. E. (2013). The molecular basis of rubberlike elasticity, Chapter 4. In J. E. Mark, B. Erman, & C. M. Roland (Eds.), The science and technology of rubber (4th ed.). Oxford: Academic Press.

    Google Scholar 

  • Everaers, R., & Kremer, K. (1996). Physical Review E, 53, R37.

    Article  ADS  Google Scholar 

  • Fernandez, A. M., Widmaier, J. M., Sperling, L. H., & Wignall, G. D. (1984). Polymer, 25, 1718.

    Article  Google Scholar 

  • Flory, P. J. (1944). Chemical Reviews, 35, 51.

    Article  Google Scholar 

  • Flory, P. J. (1947). The Journal of Chemical Physics, 15, 397.

    Article  ADS  Google Scholar 

  • Flory, P. J. (1977). The Journal of Chemical Physics, 66, 5720.

    Article  ADS  Google Scholar 

  • Flory, P. J., & Erman, B. (1982). Macromolecules, 15, 800.

    Article  ADS  Google Scholar 

  • Flory, P. J., & Rehner, J. (1943a). The Journal of Chemical Physics, 11, 512.

    Article  ADS  Google Scholar 

  • Flory, P. J., & Rehner, J. (1943b). The Journal of Chemical Physics, 11, 521.

    Article  ADS  Google Scholar 

  • Gaylord, R. J., & Douglas, J. F. (1987). Polymer Bulletin, 18, 347.

    Article  Google Scholar 

  • Gaylord, R. J., & Douglas, J. F. (1990). Polymer Bulletin, 23, 529.

    Article  Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020). Applied polymer science. Berlin and New York: Springer Nature; Chapter 5.

    Google Scholar 

  • Gee, G. (1946a). Transactions of the Faraday Society, 42, 585.

    Article  Google Scholar 

  • Gee, G. (1946b). Transactions of the Faraday Society, 42B, 33.

    Article  Google Scholar 

  • Goodyear, C. N. (1855). Gum elastic and its varieties. New Haven, CT.

    Google Scholar 

  • Goppel, J. M. (1949). Applied Sciences, A1, 3–18.

    Google Scholar 

  • Gordon, M., Kucharik, S., & Ward, T. C. (1970). Collection of Czechoslovak Chemical Communications, 35, 3252.

    Article  Google Scholar 

  • Gosline, J. M. (1978). Biopolymers, 17, 677.

    Article  Google Scholar 

  • Gosline, J., Lillie, M., Carrington, E., Guerrete, P., Ortlepp, C., & Savage, K. (2002). Philosophical Transactions of the Royal Society B, 357, 121.

    Article  Google Scholar 

  • Gottlieb, M., Macosko, C., Benjamin, G. S., Meyers, K. O., & Merill, E. W. (1981a). Macromolecules, 14, 1039.

    Article  ADS  Google Scholar 

  • Gottlieb, M., Macosco, C. W., & Lepsch, T. C. (1981b). Journal of Polymer Science, Polymer Physics Edition, 19, 1603.

    Article  ADS  Google Scholar 

  • Gough, J. (1805). Proceedings of the Literary and Philosophical Society, Manchester, 2nd Series, 1, 288.

    Google Scholar 

  • Graessley, W. W. (2004). Polymeric liquids and networks: Structure and properties. London: Garland Science.

    Google Scholar 

  • Gumbrell, S. M., Mullins, L., & Rivlin, R. S. (1953). Transactions of the Faraday Society, 49, 1495.

    Article  Google Scholar 

  • Guth, E., & Mark, H. (1934). Monatshefte für Chemie, 65, 93.

    Article  Google Scholar 

  • Hancock, T. (1857). Personal narrative of the origin and Progress of the Caoutchouc or India-rubber manufacture in England. London: Longman, Brown, Green, Longmans & Roberts.

    Google Scholar 

  • Haslach, H. W., Jr. (2011). Maximum dissipation non-linear Thermo-dynamics and its geometric structure. New York, Dordrecht, Heidelberg and London: Springer.

    Book  MATH  Google Scholar 

  • Heinrich, G., & Straube, E. (1983). Acta polymerica, 34, 589.

    Google Scholar 

  • Heinrich, G., & Straube, E. (1984). Acta polymerica, 35, 115.

    Article  Google Scholar 

  • Higgs, P. G., & Gaylord, R. J. (1990). Polymer, 31, 70.

    Article  Google Scholar 

  • James, H. M., & Guth, E. (1942). Industrial and Engineering Chemistry, 34, 1365.

    Article  Google Scholar 

  • James, H. M., & Guth, E. (1943). The Journal of Chemical Physics, 11, 455.

    Article  ADS  Google Scholar 

  • Joule, J. P. (1857). Philosophical Magazine, 14, 226.

    Google Scholar 

  • Joule, J. P. (1859). Proceeding of the Royal Society of London, 149, 91.

    Google Scholar 

  • Keeley, F. W., Bellingham, C. M., & Woodhouse, K. A. (2002). Philosophical Transactions of the Royal Society of London B, 357, 185.

    Article  Google Scholar 

  • Khokhlov, A. R. (1992). In K. Dusek (Ed.), Responsive Gels: Volume Transition I (p. 125). Berlin: Springer.

    Google Scholar 

  • Khokhlov, A. R., & Philippova, O. E. (1996). In S. E. Webber et al. (Eds.), Solvents and self-organization of polymers (p. 197). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Khokhlov, A. R., & Philippova, O. E. (2002). In Y. Osada & A. R. Khokhlov (Eds.), Polymer gels and networks (p. 163). New York: Marcel Dekker.

    Google Scholar 

  • Kuhn, W. (1934). Koll. Z., 68, 2.

    Article  Google Scholar 

  • Kuhn, W., & Grün, F. (1942). Koll. Z., 101, 248.

    Article  Google Scholar 

  • Langley, N. R. (1968). Macromolecules, 1, 348.

    Article  ADS  Google Scholar 

  • Langley, N. R., & Ferry, J. D. (1968). Macromolecules, 1, 363.

    ADS  Google Scholar 

  • Langley, N. R., & Polmanteer, K. E. (1974). Journal of Polymer Science, Polymer Physics Edition, 12, 1023.

    Article  ADS  Google Scholar 

  • Lüdersdorff, F. (1832). J. Tech. Ökonom. Chem., 15, 353.

    Google Scholar 

  • Mark, J. E. (1984). The rubber elastic state. In J. E. Mark (Ed.), Physical Properties of Polymers. Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Mark, J. E. (1993). The rubber elastic state. In J. E. Mark (Ed.), Physical properties of polymers (2nd ed.). Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Marrucci, G. (1979). Macromolecules, 14, 434.

    Article  ADS  Google Scholar 

  • Marrucci, G. (1981). Rheologica Acta, 18, 193.

    Article  Google Scholar 

  • Meyer, K. H., von Susich, G., & Valko, E. (1932). Koll. Z., 59, 208.

    Article  Google Scholar 

  • Mooney, M. (1940). Journal of Applied Physics, 11, 582.

    Article  ADS  Google Scholar 

  • Mooney, M. (1948). Journal of Applied Physics, 19, 434.

    Article  ADS  Google Scholar 

  • Mullins, L. (1959). Journal of Applied Polymer Science, 2, 1.

    Article  Google Scholar 

  • Nairn, J. A. (1998). Lattice™ 7.0, random walk simulations of polymer molecules on a tetrahedral lattice. Salt Lake City: University of Utah.

    Google Scholar 

  • Pant, P. V. K., Han, J., & Boyd, R. H. (1993). The Journal of Chemical Physics, 99, 597.

    Article  ADS  Google Scholar 

  • Patel, K. P., Malone, S., Cohen, C., Gillmor, J. R., & Colby, R. H. (1992). Macromolecules, 25, 5241.

    Article  ADS  Google Scholar 

  • Pearson, D. S., & Graessley, W. W. (1980). Macromolecules, 13, 1001.

    Article  ADS  Google Scholar 

  • Picucell, L. (2006). Chapter 8: Gelling carrageenans. In A. M. Stephen, G. O. Phillips, & P. A. Williams (Eds.), Food polysaccharides and their application (2nd ed.). Boca Raton, FL: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Rivlin, R. S. (1948). Philosophical Transactions of the Royal Society of London A, 241, 379.

    Article  ADS  Google Scholar 

  • Ronca, G., & Allegra, G. (1975). The Journal of Chemical Physics, 63, 4990.

    Article  ADS  Google Scholar 

  • Rubinstein, M., & Colby, R. H. (2003). Polymer physics. Oxford: Oxford University Press.

    Google Scholar 

  • Rubinstein, M., & Panyukov, S. (1997). Macromolecules, 30, 8036.

    Article  ADS  Google Scholar 

  • Rubinstein, M., & Panyukov, S. (2002). Macromolecules, 35, 6670.

    Article  ADS  Google Scholar 

  • Scanlan, J. (1960). Journal of Polymer Science, 43, 501.

    Article  ADS  Google Scholar 

  • Slack, C. (2002). Noble obsession: Charles Goodyear, Thomas Hancock, and the race to unlock the greatest industrial secret of the nineteenth century. New York: Hyperion.

    Google Scholar 

  • Smith, K. J., Greene, A., & Ciferri, A. (1964). Kolloid Zeitschrift, 194, 49.

    Article  Google Scholar 

  • Strobl, G. R. (1996). The physics of polymers (2nd ed., p. 315). Berlin: Springer.

    Book  Google Scholar 

  • Thomson, W. (Lord Kelvin) (1855–1857). The Quarterly Journal of Mathematics, 1, 55.

    Google Scholar 

  • Tobolsky, A. V. (1960). Chemical stress relaxation. In Properties and structure of polymers. New York: Wiley.

    Chapter  Google Scholar 

  • Törnqvist, E. G. M. (1968). The historical background of synthetic elastomers with particular emphasis on the early period. In J. P. Kennedy & E. G. M. Törnqvist (Eds.), Polymer Chemistry of Synthetic Elastomers, Part 1. New York, London and Sidney: Interscience.

    Google Scholar 

  • Treloar, L. R. G. (1941). Transactions of the Faraday Society, 37, 84.

    Article  Google Scholar 

  • Treloar, L. R. G. (1943). Transaction of the Farady Society, 39, 36.

    Google Scholar 

  • Treloar, L. R. G. (1946). Transactions of the Faraday Society, 42, 77.

    Article  MathSciNet  Google Scholar 

  • Treloar, L. R. G. (1975). The physics of rubber elasticity (3rd ed.). Oxford: Clarendon.

    Google Scholar 

  • Urry, D. W., Hugel, T., Seitz, M., Gaub, H. E., Sheiba, L., Dea, J., Xu, J., & Parker, T. (2002). Philosophical Transactions of the Royal Society of London B, 357, 169.

    Article  Google Scholar 

  • Wagner, M. H. (1994). Journal of Rheology, 38, 655.

    Google Scholar 

  • Wall, F. T. (1942). The Journal of Chemical Physics, 10, 132.

    Article  ADS  Google Scholar 

  • Wall, F. T. (1943). The Journal of Chemical Physics, 11, 527.

    Article  ADS  Google Scholar 

  • Wang, M. C., & Guth, E. (1952). The Journal of Chemical Physics, 20, 1144.

    Article  ADS  MathSciNet  Google Scholar 

  • Wood, L. A., & Roth, F. L. (1944). Journal of Applied Physics, 16, 781.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedde, U.W., Hedenqvist, M.S. (2019). Rubber Elasticity. In: Fundamental Polymer Science. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-29794-7_3

Download citation

Publish with us

Policies and ethics