Skip to main content

Investigation of the Central Nervous System in Neurogenic Pelvic Dysfunctions by Imaging

  • Chapter
  • First Online:
Suprapontine Lesions and Neurogenic Pelvic Dysfunctions

Abstract

Damage to the suprapontine structures may yield different types of pelvic organ dysfunctions.

The evolving field of brain imaging may help developing more punctual and differentiated diagnostic and therapeutic tools.

The goal of this chapter is to provide an introduction to the techniques of investigation of the suprapontine structures and to the evolution of the knowledge they have created.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostolidis A, Wagg A, Rahnam AM, Panicker J, Vrijens D, von Gontard A. Is there “brain OAB” and how can we recognize it? International consultation on incontinence-research society (ICI-RS) 2017. Neurourol Urodyn. 2018;37(S4):S38–45.

    Article  PubMed  Google Scholar 

  2. Sakakibara R, Hattori T, Yasuda K, Yamanishi T. Micturitional disturbance after acute hemispheric stroke: analysis of the lesion site by CT and MRI. J Neurol Sci. 1996;137:47–56.

    Article  CAS  PubMed  Google Scholar 

  3. Mosso A. Sulla circolazione del sangue nel cervello dell’uomo. Atti della R Acad Lincei. 1880;III:237–358.

    Google Scholar 

  4. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;435(7197):869–78.

    Article  Google Scholar 

  5. Kitta T, Mitsui T, Kanno Z, Chiba H, Moriya K, Shinohara N. Brain-bladder control network: The unsolved 21st century urological mystery. Int J Urol. 2015;22(4):342–8.

    Article  PubMed  Google Scholar 

  6. Committee on the mathematics and physics of emerging dynamic biomedical imaging, mathematics and physics of emerging biomedical imaging, National Academies Press; 1996. http://www.nap.edu/catalog/5066.html. Accessed 20 Jun 2019.

  7. Barrington F. The effect of lesions of the hind- and mid-brain on micturition in the cat. Q J Exp Physiol. 1925;15:81–102.

    Article  Google Scholar 

  8. Ueki K. Disturbances of micturition observed in some patients with brain tumour. Neurol Med Chir. 1960;2:25–33.

    Article  Google Scholar 

  9. Holstege G, Kuypers H, Boer R. Anatomical evidence for direct brainstem projections to the somatic motoneuronal cell groups and autonomic preganglionic cell groups in cat spinal cord. Brain Res. 1979;171(2):329–33.

    Article  CAS  PubMed  Google Scholar 

  10. Loewy A, Saper C, Baker R. Descending projections from the pontine micturition center. Brain Res. 1979;172(3):533–8.

    Article  CAS  PubMed  Google Scholar 

  11. Blok BF. Central Pathways controlling micturition and urinary continence. Urology. 2002;59(5 Suppl 1):13–7.

    Article  PubMed  Google Scholar 

  12. Fowler CJ, Griffiths DJ. A decade of functional brain imaging applied to bladder control. Neurourol Urodyn. 2010;29(1):49–55.

    PubMed  Google Scholar 

  13. Blok BF, Willemsen AT, Holstege G. A PET study on brain control of micturition in humans. Brain. 1997;120(Pt 1):11–121.

    Google Scholar 

  14. Craig AD. How do you feel? Interoception: the sense of physiologic al condition of the body. Nat Rev Neurosci. 2002;3(8):655–66.

    Article  CAS  PubMed  Google Scholar 

  15. Craig AD. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 2003;13(4):500–5.

    Article  CAS  PubMed  Google Scholar 

  16. Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9(6):453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jarrahi B, Mantini D, Balsters JH, Michels L, Kessler TM, Mehnert U, et al. Differential functional brain network connectivity during visceral interoception as revealed by independent component analysis of fMRI TIME-series. Hum Brain Mapp. 2015;36(11):4438–68.

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Groat W, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015;5(1):327–96.

    PubMed  PubMed Central  Google Scholar 

  19. Arya N, Weissbart S, Xu S, Rao H. Brain activation in response to bladder filling in healthy adults: an activation likelihood estimation meta-analysis of neuroimaging studies. Neurourol Urodyn. 2017;36(4):960–5.

    Article  PubMed  Google Scholar 

  20. Harvie C, Weissbart SJ, Priyanka KA, Rao H, Arya LA. Brain activation during the voiding phase of micturition in healthy adults: a meta-analysis of neuroimaging studies. Clin Anat. 2019;32(1):13–9.

    Article  PubMed  Google Scholar 

  21. Khavari R, Karmonik C, Shy M, Fletcher S, Boone T. Functional magnetic resonance imaging with concurrent urodynamic testing identifies brain structures involved in micturition cycle in patients with multiple sclerosis. J Urol. 2017;197(2):438–44.

    Article  PubMed  Google Scholar 

  22. Charil A, Zijdenbos A, Taylor J, Boelman C, Worsley K, Evans A, et al. Statistical mapping analysis of lesion location and neurological disability in multiple sclerosis: application to 452 patient data sets. NeuroImage. 2003;19(3):532–4.

    Article  PubMed  Google Scholar 

  23. Khavari R, Elias S, Boone T, Karmonik C. Similarity of functional connectivity patterns in patients with multiple sclerosis who void spontaneously versus patients with voiding dysfunction. Neurourol Urodyn. 2019;38(1):239–47.

    Article  PubMed  Google Scholar 

  24. MacKenzie-Graham A, Kurth F, Itoh Y, Wang H, Montag M, Elashoff R, et al. Disability-specific atlases of gray matter loss in relapsing-remitting multiple sclerosis. JAMA Neurol. 2016;73(8):944–53.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Winder K, Linker R, Seifert F, Deutsch M, Engelhorn T, Dörfler A, et al. Insular multiple sclerosis lesions are associated with erectile dysfunction. J Neurol. 2018;265(4):783–92.

    Article  PubMed  Google Scholar 

  26. Khavari R, Elias S, Pande R, Wu K, Boone T, Karmonik C. Higher neural correlates in patients with multiple sclerosis and neurogenic overactive bladder following treatment with intradetrusor injection of onabotulinumtoxin. J Urol. 2019;201(1):135–40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Herms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herms, A., Herms, A.M.R.D.G. (2020). Investigation of the Central Nervous System in Neurogenic Pelvic Dysfunctions by Imaging. In: Lamberti, G., Giraudo, D., Musco, S. (eds) Suprapontine Lesions and Neurogenic Pelvic Dysfunctions. Urodynamics, Neurourology and Pelvic Floor Dysfunctions. Springer, Cham. https://doi.org/10.1007/978-3-030-29775-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29775-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29774-9

  • Online ISBN: 978-3-030-29775-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics