Abstract
We introduce a family of probabilistic justification logics that feature Bayesian confirmations. Our logics include new justification terms representing evidence that make a proposition firm in the sense of making it more probable. We present syntax and semantics of our logic and establish soundness and strong completeness. Moreover, we show how to formalize in our logic the screening-off condition for transitivity of Bayesian confirmations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We agree to the convention that the formula \({!^{n-1}} c : {!^{n-2}} c : \cdots : {!c} : c : A\) represents the formula A for \(n=0\).
- 2.
We will usually write \(*_w\) instead of \(*(w)\).
References
Artemov, S.: On aggregating probabilistic evidence. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 27–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0_3
Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symbolic Logic 7(1), 1–36 (2001)
Artemov, S.N.: Justified common knowledge. Theoret. Comput. Sci. 357(1–3), 4–22 (2006). https://doi.org/10.1016/j.tcs.2006.03.009
Artemov, S.N.: The logic of justification. Rev. Symbolic Logic 1(4), 477–513 (2008). https://doi.org/10.1017/S1755020308090060
Artemov, S.N.: The ontology of justifications in the logical setting. Studia Logica 100(1–2), 17–30 (2012). https://doi.org/10.1007/s11225-012-9387-x. Published online February 2012
Artemov, S.N., Fitting, M.: Justification logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Fall 2012 edn. (2012). http://plato.stanford.edu/archives/fall2012/entries/logic-justification/
Bucheli, S., Kuznets, R., Renne, B., Sack, J., Studer, T.: Justified belief change. In: Arrazola, X., Ponte, M. (eds.) Proceedings LogKCA10, pp. 135–155. University of the Basque Country Press, Vitoria-Gasteiz (2010)
Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. J. Appl. Non-classical Logic 21(1), 35–60 (2011). https://doi.org/10.3166/JANCL.21.35-60
Bucheli, S., Kuznets, R., Studer, T.: Realizing public announcements by justifications. J. Comput. Syst. Sci. 80(6), 1046–1066 (2014). https://doi.org/10.1016/j.jcss.2014.04.001
Carnap, R.: Logical Foundations of Probability, 2nd edn. University of Chicago Press, Chicago (1962)
Fan, T., Liau, C.: A logic for reasoning about justified uncertain beliefs. In: Yang, Q., Wooldridge, M. (eds.) Proceedings IJCAI 2015, pp. 2948–2954. AAAI Press, Menlo Park (2015)
Ghari, M.: Pavelka-style fuzzy justification logics. Logic J. IGPL 24(5), 743–773 (2016)
Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards probabilistic justification logic. Logic J. IGPL 23(4), 662–687 (2015). https://doi.org/10.1093/jigpal/jzv025
Kokkinis, I., Ognjanović, Z., Studer, T.: Probabilistic justification logic. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 174–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0_13
Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp. 437–458. College Publications, Cambridge (2012)
Kuznets, R., Studer, T.: Update as evidence: belief expansion. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 266–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35722-0_19
Kuznets, R., Studer, T.: Weak arithmetical interpretations for the logic of proofs. Logic J. IGPL 24(3), 424–440 (2016)
Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications, Cambridge (2019)
Milnikel, R.S.: The logic of uncertain justifications. APAL 165(1), 305–315 (2014). https://doi.org/10.1016/j.apal.2013.07.015
Ognjanović, Z., Savić, N., Studer, T.: Justification logic with approximate conditional probabilities. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp. 681–686. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8_52
Pischke, N.: A note on strong axiomatization of Gödel-justification logic. E-print 1809.09608, arXiv.org (2018)
Rašković, M., Marković, Z., Ognjanović, Z.: A logic with approximate conditional probabilities that can model default reasoning. Int. J. Approximate Reasoning 49(1), 52–66 (2008). https://doi.org/10.1016/j.ijar.2007.08.006
Roche, W.: A weaker condition for transitivity in probabilistic support. Eur. J. Philos. Sci. 2(1), 111–118 (2012). https://doi.org/10.1007/s13194-011-0033-7
Roche, W., Shogenji, T.: Confirmation, transitivity, and moore: the screening-off approach. Philos. Stud. 168(3), 797–817 (2014). https://doi.org/10.1007/s11098-013-0161-3
Schechter, L.M.: A logic of plausible justifications. Theoret. Comput. Sci. 603, 132–145 (2015). https://doi.org/10.1016/j.tcs.2015.07.018
Schlesinger, G.N.: Measuring degrees of confirmation. Analysis 55(3), 208–212 (1995). https://doi.org/10.1093/analys/55.3.208
Shogenji, T.: A condition for transitivity in probabilistic support. Br. J. Philos. Sci. 54(4), 613–616 (2003)
Su, C.P., Fan, T.F., Liau, C.J.: Possibilistic justification logic: reasoning about justified uncertain beliefs. ACM Trans. Comput. Logic 18(2), 15:1–15:21 (2017). https://doi.org/10.1145/3091118
Talbott, W.: Bayesian epistemology. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Summer 2015 edn. (2015)
Acknowledgements
Hamzeh Mohammadi has been supported by the Ministry of Science, Research and Technology of Iran and part of the research was carried out during a visit at University of Bern.
Thomas Studer has been supported by the Swiss National Science Foundation grant 200021_165549.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Mohammadi, H., Studer, T. (2019). Bayesian Confirmation and Justifications. In: Kern-Isberner, G., Ognjanović, Z. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2019. Lecture Notes in Computer Science(), vol 11726. Springer, Cham. https://doi.org/10.1007/978-3-030-29765-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-29765-7_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29764-0
Online ISBN: 978-3-030-29765-7
eBook Packages: Computer ScienceComputer Science (R0)