Skip to main content

Bayesian Confirmation and Justifications

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11726))

  • 546 Accesses

Abstract

We introduce a family of probabilistic justification logics that feature Bayesian confirmations. Our logics include new justification terms representing evidence that make a proposition firm in the sense of making it more probable. We present syntax and semantics of our logic and establish soundness and strong completeness. Moreover, we show how to formalize in our logic the screening-off condition for transitivity of Bayesian confirmations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We agree to the convention that the formula \({!^{n-1}} c : {!^{n-2}} c : \cdots : {!c} : c : A\) represents the formula A for \(n=0\).

  2. 2.

    We will usually write \(*_w\) instead of \(*(w)\).

References

  1. Artemov, S.: On aggregating probabilistic evidence. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 27–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0_3

    Chapter  Google Scholar 

  2. Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symbolic Logic 7(1), 1–36 (2001)

    Article  MathSciNet  Google Scholar 

  3. Artemov, S.N.: Justified common knowledge. Theoret. Comput. Sci. 357(1–3), 4–22 (2006). https://doi.org/10.1016/j.tcs.2006.03.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Artemov, S.N.: The logic of justification. Rev. Symbolic Logic 1(4), 477–513 (2008). https://doi.org/10.1017/S1755020308090060

    Article  MathSciNet  MATH  Google Scholar 

  5. Artemov, S.N.: The ontology of justifications in the logical setting. Studia Logica 100(1–2), 17–30 (2012). https://doi.org/10.1007/s11225-012-9387-x. Published online February 2012

    Article  MathSciNet  MATH  Google Scholar 

  6. Artemov, S.N., Fitting, M.: Justification logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Fall 2012 edn. (2012). http://plato.stanford.edu/archives/fall2012/entries/logic-justification/

  7. Bucheli, S., Kuznets, R., Renne, B., Sack, J., Studer, T.: Justified belief change. In: Arrazola, X., Ponte, M. (eds.) Proceedings LogKCA10, pp. 135–155. University of the Basque Country Press, Vitoria-Gasteiz (2010)

    Google Scholar 

  8. Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. J. Appl. Non-classical Logic 21(1), 35–60 (2011). https://doi.org/10.3166/JANCL.21.35-60

    Article  MathSciNet  MATH  Google Scholar 

  9. Bucheli, S., Kuznets, R., Studer, T.: Realizing public announcements by justifications. J. Comput. Syst. Sci. 80(6), 1046–1066 (2014). https://doi.org/10.1016/j.jcss.2014.04.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Carnap, R.: Logical Foundations of Probability, 2nd edn. University of Chicago Press, Chicago (1962)

    MATH  Google Scholar 

  11. Fan, T., Liau, C.: A logic for reasoning about justified uncertain beliefs. In: Yang, Q., Wooldridge, M. (eds.) Proceedings IJCAI 2015, pp. 2948–2954. AAAI Press, Menlo Park (2015)

    Google Scholar 

  12. Ghari, M.: Pavelka-style fuzzy justification logics. Logic J. IGPL 24(5), 743–773 (2016)

    Article  MathSciNet  Google Scholar 

  13. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards probabilistic justification logic. Logic J. IGPL 23(4), 662–687 (2015). https://doi.org/10.1093/jigpal/jzv025

    Article  MathSciNet  MATH  Google Scholar 

  14. Kokkinis, I., Ognjanović, Z., Studer, T.: Probabilistic justification logic. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 174–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0_13

    Chapter  Google Scholar 

  15. Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp. 437–458. College Publications, Cambridge (2012)

    Google Scholar 

  16. Kuznets, R., Studer, T.: Update as evidence: belief expansion. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 266–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35722-0_19

    Chapter  Google Scholar 

  17. Kuznets, R., Studer, T.: Weak arithmetical interpretations for the logic of proofs. Logic J. IGPL 24(3), 424–440 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications, Cambridge (2019)

    MATH  Google Scholar 

  19. Milnikel, R.S.: The logic of uncertain justifications. APAL 165(1), 305–315 (2014). https://doi.org/10.1016/j.apal.2013.07.015

    Article  MathSciNet  MATH  Google Scholar 

  20. Ognjanović, Z., Savić, N., Studer, T.: Justification logic with approximate conditional probabilities. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp. 681–686. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8_52

    Chapter  MATH  Google Scholar 

  21. Pischke, N.: A note on strong axiomatization of Gödel-justification logic. E-print 1809.09608, arXiv.org (2018)

  22. Rašković, M., Marković, Z., Ognjanović, Z.: A logic with approximate conditional probabilities that can model default reasoning. Int. J. Approximate Reasoning 49(1), 52–66 (2008). https://doi.org/10.1016/j.ijar.2007.08.006

    Article  MathSciNet  MATH  Google Scholar 

  23. Roche, W.: A weaker condition for transitivity in probabilistic support. Eur. J. Philos. Sci. 2(1), 111–118 (2012). https://doi.org/10.1007/s13194-011-0033-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Roche, W., Shogenji, T.: Confirmation, transitivity, and moore: the screening-off approach. Philos. Stud. 168(3), 797–817 (2014). https://doi.org/10.1007/s11098-013-0161-3

    Article  MathSciNet  Google Scholar 

  25. Schechter, L.M.: A logic of plausible justifications. Theoret. Comput. Sci. 603, 132–145 (2015). https://doi.org/10.1016/j.tcs.2015.07.018

    Article  MathSciNet  MATH  Google Scholar 

  26. Schlesinger, G.N.: Measuring degrees of confirmation. Analysis 55(3), 208–212 (1995). https://doi.org/10.1093/analys/55.3.208

    Article  MathSciNet  MATH  Google Scholar 

  27. Shogenji, T.: A condition for transitivity in probabilistic support. Br. J. Philos. Sci. 54(4), 613–616 (2003)

    Article  MathSciNet  Google Scholar 

  28. Su, C.P., Fan, T.F., Liau, C.J.: Possibilistic justification logic: reasoning about justified uncertain beliefs. ACM Trans. Comput. Logic 18(2), 15:1–15:21 (2017). https://doi.org/10.1145/3091118

    Article  MathSciNet  MATH  Google Scholar 

  29. Talbott, W.: Bayesian epistemology. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Summer 2015 edn. (2015)

    Google Scholar 

Download references

Acknowledgements

Hamzeh Mohammadi has been supported by the Ministry of Science, Research and Technology of Iran and part of the research was carried out during a visit at University of Bern.

Thomas Studer has been supported by the Swiss National Science Foundation grant 200021_165549.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Studer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammadi, H., Studer, T. (2019). Bayesian Confirmation and Justifications. In: Kern-Isberner, G., Ognjanović, Z. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2019. Lecture Notes in Computer Science(), vol 11726. Springer, Cham. https://doi.org/10.1007/978-3-030-29765-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29765-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29764-0

  • Online ISBN: 978-3-030-29765-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics