Abstract
Intelligent Tutoring Systems (ITSs) determine the quality of student responses by means of a diagnostic process, and use this information for providing feedback and determining a student’s progress. This paper studies how ITSs diagnose student responses. In a systematic literature review we compare the diagnostic processes of 40 ITSs in various domains. We investigate what kinds of diagnoses are performed and how they are obtained, and how the processes compare across domains. The analysis identifies eight aspects that ITSs diagnose: correctness, difference, redundancy, type of error, common error, order, preference, and time. All ITSs diagnose correctness of a step. Mathematics tutors diagnose common errors more often than programming tutors, and programming tutors diagnose type of error more often than mathematics tutors. We discuss a general model for representing diagnostic processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aleven, V., McLaren, B.M., Sewall, J.: Scaling up programming by demonstration for intelligent tutoring systems development: an open-access web site for middle school mathematics learning. IEEE Trans. Learn. Technol. 2(2), 64–78 (2009)
Aleven, V., Mclaren, B.M., Sewall, J., Koedinger, K.R.: A new paradigm for intelligent tutoring systems: example-tracing tutors. Int. J. Artif. Intell. Educ. 19(2), 105–154 (2009)
Aleven, V., Popescu, O., Koedinger, K.: Pilot-testing a tutorial dialogue system that supports self-explanation. In: Cerri, S.A., Gouardères, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 344–354. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47987-2_38
Aleven, V., Popescu, O., Koedinger, K.R.: Towards tutorial dialog to support self-explanation: adding natural language understanding to a cognitive tutor. In: Proceedings of Artificial Intelligence in Education, pp. 246–255. Citeseer (2001)
Anderson, J.R., Boyle, C.F., Reiser, B.J.: Intelligent tutoring systems. Science 228(4698), 456–462 (1985)
Anderson, J.R., Boyle, C.F., Yost, G.: The geometry tutor. In: IJCAI, pp. 1–7 (1985)
Anderson, J.R., Reiser, B.J.: The LISP tutor. Byte 10, 159–175 (1985)
Arends, H., Keuning, H., Heeren, B., Jeuring, J.: An intelligent tutor to learn the evaluation of microcontroller I/O programming expressions. In: Proceedings of the 17th Koli Calling Conference on Computing Education Research, pp. 2–9. ACM (2017)
Arevalillo-Herráez, M., Arnau, D., Marco-Giménez, L.: Domain-specific knowledge representation and inference engine for an intelligent tutoring system. Knowl.-Based Syst. 49, 97–105 (2013)
Arnau, D., Arevalillo-Herráez, M., Puig, L., González-Calero, J.A.: Fundamentals of the design and the operation of an intelligent tutoring system for the learning of the arithmetical and algebraic way of solving word problems. Comput. Educ. 63, 119–130 (2013)
Arnott, E., Hastings, P., Allbritton, D.: Research methods tutor: evaluation of a dialogue-based tutoring system in the classroom. Behav. Res. Methods 40(3), 694–698 (2008)
van der Bent, R.: The diagnosing behaviour of intelligent tutoring systems. Master’s thesis, Universiteit Utrecht (2018)
Blank, G., Parvez, S., Wei, F., Moritz, S.: A web-based ITS for OO design. In: Proceedings of Workshop on Adaptive Systems for Web-based Education at 12th International Conference on Artificial Intelligence in Education (AIED 2005), Amsterdam, the Netherlands, pp. 59–64 (2005)
Brown, J.S., Burton, R.R.: Diagnostic models for procedural bugs in basic mathematical skills. Cogn. Sci. 2(2), 155–192 (1978)
Burton, R.R., Brown, J.S.: A tutoring and student modelling paradigm for gaming environments. ACM SIGCUE Outlook 10(SI), 236–246 (1976)
Chanier, T., Pengelly, M., Twidale, M., Self, J.: Conceptual modelling in error analysis in computer-assisted language learning systems. In: Swartz, M.L., Yazdani, M. (eds.) Intelligent Tutoring Systems for Foreign Language Learning. NATO ASI Series, pp. 125–150. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-77202-3_9
Cheung, A.C., Slavin, R.E.: The effectiveness of educational technology applications for enhancing mathematics achievement in k-12 classrooms: a meta-analysis. Educ. Res. Rev. 9, 88–113 (2013)
Corbett, A.T., Anderson, J.R.: Locus of feedback control in computer-based tutoring: impact on learning rate, achievement and attitudes. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 245–252. ACM (2001)
Corbett, A.T., Anderson, J.R., Patterson, E.G.: Student modeling and tutoring flexibility in the Lisp intelligent tutoring system. In: Gauthier, G., Frasson, C. (eds.) Intelligent Tutoring Systems: at the crossroads of artificial intelligence and education, pp. 83–106. Intellect Ltd. (1990)
Demenko, G., Wagner, A., Cylwik, N.: The use of speech technology in foreign language pronunciation training. Arch. Acoust. 35(3), 309–329 (2010)
El-Kechaï, N., Delozanne, É., Prévit, D., Grugeon, B., Chenevotot, F.: Evaluating the performance of a diagnosis system in school algebra. In: Leung, H., Popescu, E., Cao, Y., Lau, R.W.H., Nejdl, W. (eds.) ICWL 2011. LNCS, vol. 7048, pp. 263–272. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25813-8_28
Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., Chen, L.: Data driven automatic feedback generation in the ilist intelligent tutoring system. Technol. Instr. Cogn. Learn. 10(1), 5–26 (2015)
Glass, M.: Some phenomena handled by the circsim-tutor version 3 input understander. In: Proceedings of the Tenth Florida Artificial Intelligence Research Symposium, Daytona Beach, pp. 21–25 (1997)
Goguadze, G., Melis, E.: Combining evaluative and generative diagnosis in activemath. In: Proceedings of the 2009 Conference on Artificial Intelligence in Education: Building Learning Systems That Care: From Knowledge Representation to Affective Modelling, pp. 668–670 (2009)
Graesser, A.C., et al.: Autotutor: a tutor with dialogue in natural language. Behav. Res. Methods Instrum. Comput. 36(2), 180–192 (2004)
Graesser, A.C., Wiemer-Hastings, P., Wiemer-Hastings, K., Harter, D., Tutoring Research Group, T.R.G., Person, N.: Using latent semantic analysis to evaluate the contributions of students in autotutor. Interact. Learn. Environ. 8(2), 129–147 (2000)
Grivokostopoulou, F., Perikos, I., Hatzilygeroudis, I.: An educational system for learning search algorithms and automatically assessing student performance. Int. J. Artif. Intell. Educ. 27(1), 207–240 (2017)
Hattie, J., Timperley, H.: The power of feedback. Rev. Educ. Res. 77(1), 81–112 (2007)
Heeren, B., Jeuring, J.: Feedback services for stepwise exercises. Sci. Comput. Program. 88, 110–129 (2014)
Heffernan, N.T., Koedinger, K.R.: An intelligent tutoring system incorporating a model of an experienced human tutor. In: Cerri, S.A., Gouardères, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 596–608. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47987-2_61
Hennecke, M.: Online Diagnose in intelligenten mathematischen Lehr-Lern-Systemen. Ph.D. thesis, Hildesheim University (1999). in German
Hong, J.: Guided programming and automated error analysis in an intelligent prolog tutor. Int. J. Hum Comput Stud. 61(4), 505–534 (2004)
Jaques, P.A., et al.: Rule-based expert systems to support step-by-step guidance in algebraic problem solving: the case of the tutor pat2math. Expert Syst. Appl. 40(14), 5456–5465 (2013)
Jeuring, J., Gerdes, A., Heeren, B.: A programming tutor for haskell. In: Zsók, V., Horváth, Z., Plasmeijer, R. (eds.) CEFP 2011. LNCS, vol. 7241, pp. 1–45. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32096-5_1
Jin, W., Barnes, T., Stamper, J., Eagle, M.J., Johnson, M.W., Lehmann, L.: Program representation for automatic hint generation for a data-driven novice programming tutor. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 304–309. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30950-2_40
Jin, W., Corbett, A., Lloyd, W., Baumstark, L., Rolka, C.: Evaluation of guided-planning and assisted-coding with task relevant dynamic hinting. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 318–328. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07221-0_40
Johnson, B.G., Phillips, F., Chase, L.G.: An intelligent tutoring system for the accounting cycle: enhancing textbook homework with artificial intelligence. J. Account. Educ. 27(1), 30–39 (2009)
Johnson, S.D., et al.: Application of cognitive theory to the design, development, and implementation of a computer-based troubleshooting tutor (1992)
Johnson, W.L.: Intention-Based Diagnosis of Novice Programming Errors. MorganKaufmann, Los Altos (1986)
Keuning, H., Heeren, B., Jeuring, J.: Strategy-based feedback in a programming tutor. In: Proceedings of the Computer Science Education Research Conference, pp. 43–54. ACM (2014)
Keuning, H., Jeuring, J., Heeren, B.: A systematic literature review of automated feedback generation for programming exercises. ACM Trans. Comput. Educ. 19(1), 3:1–3:43 (2018)
Kim, N., Evens, M., Michael, J.A., Rovick, A.A.: Circsim-tutor: an intelligent tutoring system for circulatory physiology. In: Maurer, H. (ed.) ICCAL 1989. LNCS, vol. 360, pp. 254–266. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51142-3_64
Koedinger, K.R., Aleven, V., Heffernan, N., McLaren, B., Hockenberry, M.: Opening the door to non-programmers: authoring intelligent tutor behavior by demonstration. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 162–174. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30139-4_16
Koedinger, K.R., Anderson, J.R.: Reifying implicit planning in geometry guidelines for model-based intelligent. In: Lajoie, S., Derry, S. (eds.) Computers as Cognitive Tools. Erlbaum, Hillsdale (2013)
Lee, W., de Silva, R., Peterson, E.J., Calfee, R.C., Stahovich, T.F.: Newton’s pen: a pen-based tutoring system for statics. Comput. Graph. 32(5), 511–524 (2008)
Lester, J.C., Stone, B.A., O’Leary, M.A., Stevenson, R.B.: Focusing problem solving in design-centered learning environments. In: Frasson, C., Gauthier, G., Lesgold, A. (eds.) ITS 1996. LNCS, vol. 1086, pp. 475–483. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61327-7_146
Lester, J.C., Stone, B.A., Stelling, G.D.: Lifelike pedagogical agents for mixed-initiative problem solving in constructivist learning environments. User Model. User-Adap. Inter. 9(1–2), 1–44 (1999)
Lodder, J., Heeren, B., Jeuring, J.: A domain reasoner for propositional logic. J. Univ. Comput. Sci. 22(8), 1097–1122 (2016)
Looi, C.K.: Automatic debugging of prolog programs in a prolog intelligent tutoring system. Instr. Sci. 20(2–3), 215–263 (1991)
Mitrovic, A., Suraweera, P., Martin, B.: Intelligent tutors for all: the constraint-based approach. IEEE Intell. Syst. 22(4), 38–45 (2007)
Razzaq, L.M., et al.: Blending assessment and instructional assisting. In: AIED, pp. 555–562 (2005)
Rivers, K., Koedinger, K.R.: Data-driven hint generation in vast solution spaces: a self-improving python programming tutor. Int. J. Artif. Intell. Educ. 27(1), 37–64 (2017)
Roll, I., Aleven, V., Koedinger, K.R.: The invention lab: using a hybrid of model tracing and constraint-based modeling to offer intelligent support in inquiry environments. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6094, pp. 115–124. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13388-6_16
Sangwin, C.: Computer Aided Assessment of Mathematics. Oxford University Press, Oxford (2013)
Sklavakis, D., Refanidis, I.: An individualized web-based algebra tutor based on dynamic deep model tracing. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 389–394. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87881-0_38
Sklavakis, D., Refanidis, I.: Mathesis: an intelligent web-based algebra tutoring school. Int. J. Artif. Intell. Educ. 22(4), 191–218 (2013)
Song, J., Hahn, S., Tak, K., Kim, J.: An intelligent tutoring system for introductory C language course. Comput. Educ. 28(2), 93–102 (1997)
Suraweera, P., Mitrovic, A.: KERMIT: a constraint-based tutor for database modeling. In: Cerri, S.A., Gouardères, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 377–387. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47987-2_41
Sykes, E.R.: Design, development and evaluation of the Java intelligent tutoring system. Technol. Instr. Cogn. Learn. 8(1), 25–65 (2010)
VanLehn, K.: The behavior of tutoring systems. Int. J. Artif. Intell. Educ. 16(3), 227–265 (2006)
VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol. 46(4), 197–221 (2011)
VanLehn, K., et al.: The Architecture of Why2-Atlas: A Coach for Qualitative Physics Essay Writing. In: Cerri, S.A., Gouardères, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 158–167. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47987-2_20
VanLehn, K.: The andes physics tutoring system: lessons learned. Int. J. Artifi. Intell. Educ. 15(3), 147–204 (2005)
Weber, G., Brusilovsky, P.: Elm-art: an adaptive versatile system for web-based instruction. Int. J. Artif. Intell. Educ. (IJAIED) 12, 351–384 (2001)
Weragama, D., Reye, J.: Analysing student programs in the php intelligent tutoring system. Int. J. Artif. Intell. Educ. 24(2), 162–188 (2014)
Wetzel, J., et al.: The design and development of the dragoon intelligent tutoring system for model construction: lessons learned. Interact. Learn. Environ. 25(3), 361–381 (2017)
Zatarain-Cabada, R., Barrón-Estrada, M.L., Pérez, Y.H., Reyes-GarcÃa, C.A.: Designing and implementing affective and intelligent tutoring systems in a learning social network. In: Batyrshin, I., Mendoza, M.G. (eds.) MICAI 2012. LNCS (LNAI), vol. 7630, pp. 444–455. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37798-3_39
Zinn, C.: Algorithmic debugging to support cognitive diagnosis in tutoring systems. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS (LNAI), vol. 7006, pp. 357–368. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24455-1_35
Acknowledgements
The authors would like to thank the anonymous reviewers and the members of the Utrecht reading club on educational technology for their helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
van der Bent, R., Jeuring, J., Heeren, B. (2019). The Diagnosing Behaviour of Intelligent Tutoring Systems. In: Scheffel, M., Broisin, J., Pammer-Schindler, V., Ioannou, A., Schneider, J. (eds) Transforming Learning with Meaningful Technologies. EC-TEL 2019. Lecture Notes in Computer Science(), vol 11722. Springer, Cham. https://doi.org/10.1007/978-3-030-29736-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-29736-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29735-0
Online ISBN: 978-3-030-29736-7
eBook Packages: Computer ScienceComputer Science (R0)