Group Coach for Co-located Collaboration

  • Sambit PraharajEmail author
  • Maren Scheffel
  • Hendrik Drachsler
  • Marcus Specht
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11722)


Collaboration is an important 21st century skill; it can take place in a remote or co-located setting. Co-located collaboration (CC) gives rise to subtle human interactions that can be described with multimodal indicators like gaze, speech and social skills. In this demo paper, we first give a brief overview of related work that has identified indicators during CC. Then, we look briefly at the feedback mechanisms that have been designed based on these indicators to facilitate CC. Using these theoretical insights, we design a prototype to give automated real-time feedback to facilitate CC taking the help of the most abundant modality during CC i.e., audio cues.


Co-located collaboration Real-time feedback CSCL Collaboration indicators Multimodal learning analytics 


  1. 1.
    Bachour, K., Kaplan, F., Dillenbourg, P.: An interactive table for supporting participation balance in face-to-face collaborative learning. IEEE Trans. Learn. Technol. 3(3), 203–213 (2010)CrossRefGoogle Scholar
  2. 2.
    Bassiou, N., et al.: Privacy-preserving speech analytics for automatic assessment of student collaboration. In: INTERSPEECH, pp. 888–892 (2016)Google Scholar
  3. 3.
    Cukurova, M., Luckin, R., Mavrikis, M., Millán, E.: Machine and human observable differences in groups’ collaborative problem-solving behaviours. In: Lavoué, É., Drachsler, H., Verbert, K., Broisin, J., Pérez-Sanagustín, M. (eds.) EC-TEL 2017. LNCS, vol. 10474, pp. 17–29. Springer, Cham (2017). Scholar
  4. 4.
    Grover, S., Bienkowski, M., Tamrakar, A., Siddiquie, B., Salter, D., Divakaran, A.: Multimodal analytics to study collaborative problem solving in pair programming. In: Proceedings of the 6th International Conference on LAK, pp. 516–517. ACM (2016)Google Scholar
  5. 5.
    Kim, T., Chang, A., Holland, L., Pentland, A.S.: Meeting mediator: enhancing group collaboration using sociometric feedback. In: Proceedings of the 2008 ACM Conference on CSCW, pp. 457–466. ACM (2008)Google Scholar
  6. 6.
    Lubold, N., Pon-Barry, H.: Acoustic-prosodic entrainment and rapport in collaborative learning dialogues. In: Proceedings of the 2014 ACM WS on Multimodal Learning Analytics Workshop and Grand Challenge, pp. 5–12. ACM (2014)Google Scholar
  7. 7.
    Praharaj, S., Scheffel, M., Drachsler, H., Specht, M.: MULTIFOCUS: MULTImodal learning analytics for co-located collaboration understanding and support. In: EC-TEL (Doctoral Consortium) (2018)Google Scholar
  8. 8.
    Praharaj, S., Scheffel, M., Drachsler, H., Specht, M.: Multimodal analytics for real-time feedback in co-located collaboration. In: Pammer-Schindler, V., Pérez-Sanagustín, M., Drachsler, H., Elferink, R., Scheffel, M. (eds.) EC-TEL 2018. LNCS, vol. 11082, pp. 187–201. Springer, Cham (2018). Scholar
  9. 9.
    Stahl, G., Law, N., Hesse, F.: Reigniting CSCL flash themes. Int. J. CSCL 8(4), 369–374 (2013)Google Scholar
  10. 10.
    Tausch, S., Hausen, D., Kosan, I., Raltchev, A., Hussmann, H.: Groupgarden: supporting brainstorming through a metaphorical group mirror on table or wall. In: Proceedings of the 8th Nordic Conference on HCI, pp. 541–550. ACM (2014)Google Scholar
  11. 11.
    Terken, J., Sturm, J.: Multimodal support for social dynamics in co-located meetings. Pers. Ubiquit. Comput. 14(8), 703–714 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Open UniversiteitHeerlenThe Netherlands
  2. 2.DIPFFrankfurt am MainGermany
  3. 3.Goethe UniversitätFrankfurt am MainGermany

Personalised recommendations