Skip to main content

Spatial Variability and Temporal Stability of Local Net Precipitation Patterns

  • Chapter
  • First Online:

Abstract

Redistribution of precipitation water by plant canopies increases the spatial variation of net precipitation at the surface, affecting soil moisture patterns, localized preferential flow, and soil biogeochemical processes. This chapter reviews methods for assessing and the current state of knowledge on spatial patterns of the two net precipitation components: throughfall and stemflow. Spatial variation in throughfall is caused by canopy morphology, including creation of rain shadows due to canopy topography and dripping points. Stand scale throughfall is less than above-canopy precipitation (in the absence of fog), however, localized throughfall receipt at the surface ranges widely—from negligible beneath dense canopy areas to 10 times greater than gross precipitation. Coefficients of variation of throughfall (CVT) vary with canopy complexity, event size, and averaging period. In extreme cases, CVT > 1 for single events in regions with complex canopies have been observed, but they decrease to <0.5 when considered over longer periods, and tend to be even lower in large events. Canopies of low complexity and small event sizes also tend to increase throughfall correlation lengths, which can be up to several meters in temperate regions and in leafed conditions. Arguably, the greatest variation in below-canopy precipitation is caused by the local input of stemflow. Local stemflow inputs at the base of individual trees on average exceed rainfall multifold (reaching 100 times), but local stemflow can also be less than rainfall. Stemflow from understory herbaceous plants, shrubs, and croplands can magnify rainfall by >2,500 times. Few studies select trees for stemflow measurement in a randomized fashion and in sufficient number; therefore, spatial CVS between individuals are typically not reported. In the studies available CVT > 1 are common and CVs of stemflow are typically much larger than those of throughfall. Differences between neighboring individuals are substantial, with tree species, tree size (e.g., canopy and stem size, number of branches) and crown architecture being reported as the most important drivers for observed variations. Both throughfall and stemflow contribute to comparatively stable net precipitation patterns over time, potentially much more so in stemflow compared to throughfall. For spatiotemporal patterns of solutes in net precipitation, little is known, and nothing is known about fine-scale patterns in particulates. Data collected to date are near-exclusively measured under overstory trees during rainfall, leaving the precipitation redistribution patterns that actually reach the surface beneath understory plants essentially unknown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aboal J, Morales D, Hernández M, Jiménez M (1999) The measurement and modelling of the variation of stemflow in a laurel forest in Tenerife, Canary Islands. J Hydrol 221(3–4):161–175

    Article  Google Scholar 

  • Andersson T (1991) Influence of stemflow and throughfall from common oak (Quercus robur) on soil chemistry and vegetation patterns. Can J For Res 21(6):917–924

    Article  Google Scholar 

  • Backnäs S, Laine-Kaulio H, Kløve B (2012) Phosphorus forms and related soil chemistry in preferential flowpaths and the soil matrix of a forested podzolic till soil profile. Geoderma 189–190:50–64. https://doi.org/10.1016/j.geoderma.2012.04.016

    Article  Google Scholar 

  • Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For Ecol Manag 254(1):1–15

    Article  Google Scholar 

  • Beard KH, Vogt KA, Kulmatiski A (2002) Top-down effects of a terrestrial frog on forest nutrient dynamics. Oecologia 133(4):583–593

    Article  Google Scholar 

  • Beier C, Hansen K, Gundersen P (1993) Spatial variability of throughfall fluxes in a spruce forest. Environ Pollut 81(3):257–267

    Article  Google Scholar 

  • Bellot J, Escarre A (1998) Stemflow and throughfall determination in a resprouted Mediterranean holm-oak forest. In: Annales des sciences forestières, vol 7. EDP Sciences, pp 847–865

    Google Scholar 

  • Bouten W, Heimovaara T, Tiktak A (1992) Spatial patterns of throughfall and soil water dynamics in a Douglas fir stand. Water Resour Res 28(12):3227–3233

    Article  Google Scholar 

  • Brandt C (1989) The size distribution of throughfall drops under vegetation canopies. CATENA 16(4–5):507–524

    Article  Google Scholar 

  • Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001) Preferential flow paths: biological ‘hot spots’ in soils. Soil Biol Biochem 33(6):729–738

    Article  Google Scholar 

  • Carlyle-Moses DE, Laureano JSF, Price AG (2004) Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico. J Hydrol 297:124–135. https://doi.org/10.1016/j.jhydrol.2004.04.007

    Article  Google Scholar 

  • Carlyle-Moses DE, Iida S, Germer S, Llorens P, Michalzik B, Nanko K, Tischer A, Levia DF (2018) Expressing stemflow commensurate with its ecohydrological importance. Adv Water Resour 121:472–479

    Article  Google Scholar 

  • Cavelier J, Ma Jaramillo, Solis D, de León D (1997) Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. J Hydrol 193(1–4):83–96

    Article  Google Scholar 

  • Ceccherini MT, Ascher J, Agnelli A, Certini G, Pietramellara G, Piovanelli C, Nannipieri P (2008) Tree bark and soil ammonia oxidizers: a molecular study on a historical forest of central Italy. Fresenius Environ Bull 17(7 B):882–889

    Google Scholar 

  • Chang SC, Matzner E (2000) The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrol Process 14(1):135–144

    Article  Google Scholar 

  • Crockford R, Richardson D (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14(16–17):2903–2920

    Article  Google Scholar 

  • Duijsings J, Verstraten J, Bouten W (1986) Spatial variability in nutrient deposition under an oak/beech canopy. Zeitschrift für Pflanzenernährung und Bodenkunde 149(6):718–727

    Article  Google Scholar 

  • Dunkerley D (2014) Stemflow on the woody parts of plants: dependence on rainfall intensity and event profile from laboratory simulations. Hydrol Process 28(22):5469–5482. https://doi.org/10.1002/hyp.10050

    Article  Google Scholar 

  • Fan J, Oestergaard KT, Guyot A, Jensen DG, Lockington DA (2015) Spatial variability of throughfall and stemflow in an exotic pine plantation of subtropical coastal Australia. Hydrol Process 29(5):793–804

    Article  Google Scholar 

  • Ford E, Deans J (1978) The effects of canopy structure on stemflow, throughfall and interception loss in a young Sitka spruce plantation. J Appl Ecol 905–917

    Google Scholar 

  • Fowler AM (2015) The relationship between throughfall, stemflow, and rainfall in a northern New Zealand native forest headwater catchment. J Hydrol (New Zealand) 109–124

    Google Scholar 

  • Friesen J, Van Stan JT (2019) Early european observations of precipitation partitioning by vegetation: a synthesis and evaluation of 19th century findings. Geosci 9(10):423

    Google Scholar 

  • Gerrits AMJ, Pfister L, Savenije HHG (2010) Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol Process 24(21):3011–3025. https://doi.org/10.1002/hyp.7712

    Article  Google Scholar 

  • Gersper PL, Holowaychuk N (1971) Some effects of stem flow from forest canopy trees on chemical properties of soils. Ecology 691–702

    Google Scholar 

  • Gordon D, Coenders-Gerrits A, Van Stan II JT (2018) Net rainfall partitioning by herbaceous plants in a Pinus palustris understory. In: American geophysical union fall meeting, Washington, D.C.

    Google Scholar 

  • Gordon D, Coenders-Gerrits A, Sellers BA, Sadeghi SMM, Van Stan JT (in prep) Rainfall interception and redistribution by a dominant understory and pasture forb, Eupatorium capillifolium (dogfennel). To be submitted to Agric Forest Meteorol

    Google Scholar 

  • Gotsch SG, Nadkarni N, Amici A (2016) The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. J Trop Ecol 32(5):455–468

    Article  Google Scholar 

  • Greenwood J, Sandomire M (1950) Sample size required for estimating the standard deviation as a percent of its true value. J Am Stat Assoc 45(250):257–260

    Article  Google Scholar 

  • Guswa AJ, Spence CM (2012) Effect of throughfall variability on recharge: application to hemlock and deciduous forests in western Massachusetts. Ecohydrology 5(5):563–574. https://doi.org/10.1002/eco.281

    Article  Google Scholar 

  • Hanchi A, Rapp M (1997) Stemflow determination in forest stands. For Ecol Manag 97(3):231–235

    Article  Google Scholar 

  • Helvey J, Patric J (1965) Design criteria for interception studies. In: Design of hydrological networks; Proceedings of a symposium, pp 131–137

    Google Scholar 

  • Herwitz SR (1986) Infiltration-excess caused by stemflow in a cyclone-prone tropical rainforest. Earth Surf Proc Land 11(4):401–412

    Article  Google Scholar 

  • Herwitz SR (1987) Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stemflow and throughfall generation. Earth Surf Proc Land 12(4):425–432

    Article  Google Scholar 

  • Holwerda F, Scatena F, Bruijnzeel L (2006) Throughfall in a Puerto Rican lower montane rain forest: a comparison of sampling strategies. J Hydrol 327(3–4):592–602

    Article  Google Scholar 

  • Hoppe E (1896) Regenmessung unter Baumkronen. W. Frick

    Google Scholar 

  • Hörmann G, Branding A, Clemen T, Herbst M, Hinrichs A, Thamm F (1996) Calculation and simulation of wind controlled canopy interception of a beech forest in Northern Germany. Agric For Meteorol 79(3):131–148

    Article  Google Scholar 

  • Horton RE (1919) Rainfall interception. Mon Weather Rev 47(9):603–623

    Article  Google Scholar 

  • Howard DH, VanStan JT, Whitetree A, Zhu L, Stubbins A (2018) Interstorm variability in the biolability of tree-derived dissolved organic matter (Tree-DOM) in throughfall and stemflow. Forests 9(5):236

    Article  Google Scholar 

  • Hsueh YH, Allen ST, Keim RF (2016) Fine-scale spatial variability of throughfall amount and isotopic composition under a hardwood forest canopy. Hydrol Process 30(11):1796–1803

    Article  Google Scholar 

  • Johnson R (1990) The interception, throughfall and stemflow in a forest in highland Scotland and the comparison with other upland forests in the UK. J Hydrol 118(1–4):281–287

    Article  Google Scholar 

  • Juvik JO, Nullet D (1995) Relationships between rainfall, cloud-water interception, and canopy throughfall in a Hawaiian montane forest. In: Tropical montane cloud forests. Springer, pp 165–182

    Google Scholar 

  • Keim RF, Skaugset AE, Weiler M (2005) Temporal persistence of spatial patterns in throughfall. J Hydrol 314(1–4):263–274. https://doi.org/10.1016/j.jhydrol.2005.03.021

    Article  Google Scholar 

  • Kimmins J (1973) Some statistical aspects of sampling throughfall precipitation in nutrient cycling studies in British Columbian coastal forests. Ecology 54(5):1008–1019

    Article  Google Scholar 

  • Kirkham D, Bartholomew W (1954) Equations for following nutrient transformations in soil, utilizing tracer data 1. Soil Sci Soc Am J 18(1):33–34

    Article  Google Scholar 

  • Kittredge J, Loughead H, Mazurak A (1941) Interception and stemflow in a pine plantation. J For 39(6):505–522

    Google Scholar 

  • Klos PZ, Chain-Guadarrama A, Link TE, Finegan B, Vierling LA, Chazdon R (2014) Throughfall heterogeneity in tropical forested landscapes as a focal mechanism for deep percolation. J Hydrol 519:2180–2188

    Article  Google Scholar 

  • Koch A, Matzner E (1993) Heterogeneity of soil and soil solution chemistry under Norway spruce (Picea abies Karst.) and European beech (Fagus silvatica L.) as influenced by distance from the stem basis. Plant Soil 151(2):227–237

    Google Scholar 

  • Konishi S, Tani M, Kosugi Y, Takanashi S, Sahat MM, Nik AR, Niiyama K, Okuda T (2006) Characteristics of spatial distribution of throughfall in a lowland tropical rainforest, Peninsular Malaysia. For Ecol Manag 224(1–2):19–25

    Article  Google Scholar 

  • Krashevska V, Sandmann D, Maraun M, Scheu S (2012) Consequences of exclusion of precipitation on microorganisms and microbial consumers in montane tropical rainforests. Oecologia 170(4):1067–1076

    Article  Google Scholar 

  • Krutzsch H (1855) Ueber den Einfluss der Waldungen auf die Regenverh&ltnisse der gemassigten Zone. Tharander forstliches Jahrbuch 11:123–141

    Google Scholar 

  • Lawrence GB, Fernandez IJ (1993) A reassessment of areal variability of throughfall deposition measurements. Ecol Appl 3(3):473–480

    Article  Google Scholar 

  • Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274(1–4):1–29

    Article  Google Scholar 

  • Levia DF, Frost EE (2006) Variability of throughfall volume and solute inputs in wooded ecosystems. Prog Phys Geogr 30(5):605–632. https://doi.org/10.1177/0309133306071145

    Article  Google Scholar 

  • Levia DF, Germer S (2015) A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev Geophys 53(3):673–714

    Article  Google Scholar 

  • Levia DF, Michalzik B, Näthe K, Bischoff S, Richter S, Legates DR (2015) Differential stemflow yield from European beech saplings: the role of individual canopy structure metrics. Hydrol Process 29(1):43–51. https://doi.org/10.1002/hyp.10124

    Article  Google Scholar 

  • Lewis J (2003) Stemflow estimation in a redwood forest using model-based stratified random sampling. Environmetrics 14(6):559–571

    Article  Google Scholar 

  • Li J, Gilhooly WP, Okin GS, Blackwell J (2017) Abiotic processes are insufficient for fertile island development: a 10-year artificial shrub experiment in a desert grassland. Geophys Res Lett 44(5):2245–2253

    Article  Google Scholar 

  • Li X-Y, Yang Z-P, Li Y-T, Lin H (2009) Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils. Hydrol Earth Syst Sci 13(7):1133–1144

    Article  Google Scholar 

  • Lima RS de, Bourscheidt V, Tanaka MO (2018) Relationships between rainfall and throughfall in a secondary forest in southeastern Brazil: an evaluation of different statistical models. Rbrh 23. https://doi.org/10.1590/2318-0331.231820170155

  • Lin T-C, Hamburg SP, King H-B, Hsia Y-J (1997) Spatial variability of throughfall in a subtropical rain forest in Taiwan. J Environ Qual 26(1):172–180

    Article  Google Scholar 

  • Lindberg SE, Lovett GM (1985) Field measurements of particle dry deposition rates to foliage and inert surfaces in a forest canopy. Environ Sci Technol 19(3):238–244

    Article  Google Scholar 

  • Linskens H (1951) Niederschlagsmessungen unter verschiedenen Baumkronentypen im belaubten und unbelaubten Zustand. Plant Biol 64(2):214–220. https://doi.org/10.1111/j.1438-8677.1951.tb02129.x

    Article  Google Scholar 

  • Linskens H (1952) Niederschlagsverteilung unter einem Apfelbaum um Laufe einer Vegeattionsperiode. Annalen der Meteorologie 1(2):30–34

    Google Scholar 

  • Liu H, Zhang R, Zhang L, Wang X, Li Y, Huang G (2015) Stemflow of water on maize and its influencing factors. Agric Water Manag 158:35–41

    Article  Google Scholar 

  • Llorens P, Poch R, Latron J, Gallart F (1997) Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. Monitoring design and results down to the event scale. J Hydrol 199:331–345. https://doi.org/10.1016/S0022-1694(96)03334-3

    Article  Google Scholar 

  • Lloyd C, Marques ADO (1988) Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agric For Meteorol 42(1):63–73

    Article  Google Scholar 

  • Loescher HW, Powers JS, Oberbauer SF (2002) Spatial variation of throughfall volume in an old-growth tropical wet forest, Costa Rica. J Trop Ecol 18(3):397–407

    Article  Google Scholar 

  • Loustau D, Berbigier P, Granier A, Moussa FEH (1992) Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy. J Hydrol 138 (3–4):449–467

    Google Scholar 

  • Metzger JC, Wutzler T, Dalla Valle N, Filipzik J, Grauer C, Lehmann R, Roggenbuck M, Schelhorn D, Weckmüller J, Küsel K (2017) Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrol Process 31(22):3783–3795

    Article  Google Scholar 

  • Metzger JC, Schumacher J, Lange M, Hildebrandt A (2019) Neighborhood and stand structure affect stemflow generation in a heterogeneous deciduous temperate forest. Hydrol Earth Syst Sci Discuss (in review)

    Google Scholar 

  • Michalzik B (2011) Insects, infestations, and nutrient fluxes. In: Forest hydrology and biogeochemistry. Springer, pp 557–580

    Google Scholar 

  • Molina A, Llorens P, Garcia-Estringana P, de las Heras MM, Cayuela C, Latron F, Latron J (2019) Contributions of throughfall, forest and soil characteristics to near-surface soil water-content variability at the plot scale in a mountainous Mediterranean area. Sci Total Environ 647:1421–1432

    Article  Google Scholar 

  • Moore LD, Van Stan JT, Gay TE, Rosier C, Wu T (2016) Alteration of soil chitinolytic bacterial and ammonia oxidizing archaeal community diversity by rainwater redistribution in an epiphyte-laden Quercus virginiana canopy. Soil Biol Biochem 100:33–41. https://doi.org/10.1016/j.soilbio.2016.05.016

    Article  Google Scholar 

  • Nanko K, Hotta N, Suzuki M (2006) Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. J Hydrol 329(3–4):422–431

    Article  Google Scholar 

  • Nanko K, Onda Y, Ito A, Moriwaki H (2011) Spatial variability of throughfall under a single tree: experimental study of rainfall amount, raindrops, and kinetic energy. Agric For Meteorol 151(9):1173–1182. https://doi.org/10.1016/j.agrformet.2011.04.006

    Article  Google Scholar 

  • Nanko K, Onda Y, Kato H, Gomi T (2016) Immediate change in throughfall spatial distribution and canopy water balance after heavy thinning in a dense mature Japanese cypress plantation. Ecohydrology 9(2):300–314

    Article  Google Scholar 

  • Nanko K, Watanabe A, Hotta N, Suzuki M (2013) Physical interpretation of the difference in drop size distributions of leaf drips among tree species. Agric For Meteorol 169:74–84

    Article  Google Scholar 

  • Oliver M, Webster R (2014) A tutorial guide to geostatistics: computing and modelling variograms and kriging. CATENA 113:56–69

    Article  Google Scholar 

  • Olson RK, Reiners WA, Lovett GM (1985) Trajectory analysis of forest canopy effects on chemical flux in throughfall. Biogeochemistry 1(4):361–373

    Article  Google Scholar 

  • Price A, Dunham K, Carleton T, Band L (1997) Variability of water fluxes through the black spruce (Picea mariana) canopy and feather moss (Pleurozium schreberi) carpet in the boreal forest of Northern Manitoba. J Hydrol 196(1–4):310–323

    Article  Google Scholar 

  • Price AG, Watters RJ (1989) The influence of the overstory, understory and upper soil horizons on the fluxes of some ions in a mixed deciduous forest. J Hydrol 109(1–2):185–197

    Article  Google Scholar 

  • Ptatscheck C, Milne PC, Traunspurger W (2018) Is stemflow a vector for the transport of small metazoans from tree surfaces down to soil? BMC Ecol 18(1):43

    Article  Google Scholar 

  • Raat K, Draaijers G, Schaap M, Tietema A, Verstraten J (2002) Spatial variability of throughfall water and chemistry and forest floor water content in a Douglas fir forest stand. Hydrol Earth Syst Sci Dis 6(3):363–374

    Article  Google Scholar 

  • Rosier CL, Levia DF, Van Stan JT, Aufdenkampe A, Kan J (2016) Seasonal dynamics of the soil microbial community structure within the proximal area of tree boles: Possible influence of stemflow. Eur J Soil Biol 73:108–118. https://doi.org/10.1016/j.ejsobi.2016.02.003

    Article  Google Scholar 

  • Rosier CL, Van Stan JT, Moore LD, Schrom JOS, Wu T, Reichard JS, Kan J (2015) Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand. Ecohydrology 8(8):1459–1470. https://doi.org/10.1002/eco.1595

    Article  Google Scholar 

  • Sadeghi SMM, Van Stan JT, Pypker TG, Friesen J (2017) Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven). Agric For Meteorol 240–241:10–17. https://doi.org/10.1016/j.agrformet.2017.03.017

    Article  Google Scholar 

  • Sangster KB (1986) Throughfall and stemflow in New Zealand kauri (Agathis australis (D. Don) Lindl.). University of Auckland

    Google Scholar 

  • Santos Terra MDCN, de Mello CR, de Mello JM, de Oliveira VA, Nunes MH, Silva VO, Rodrigues AF, Alves GJ (2018) Stemflow in a neotropical forest remnant: vegetative determinants, spatial distribution and correlation with soil moisture. Trees 32(1):323–335

    Article  Google Scholar 

  • Schmidl J, Sulzer P, Kitching R (2008) The insect assemblage in water filled tree-holes in a European temperate deciduous forest: community composition reflects structural, trophic and physicochemical factors. Hydrobiologia 598(1):285–303

    Article  Google Scholar 

  • Scholl M, Giambelluca T, Gingerich S, Nullet M, Loope L (2007) Cloud water in windward and leeward mountain forests: the stable isotope signature of orographic cloud water. Water Resour Res 43(12)

    Google Scholar 

  • Schwärzel K, Ebermann S, Schalling N (2012) Evidence of double-funneling effect of beech trees by visualization of flow pathways using dye tracer. J Hydrol 470–471:184–192. https://doi.org/10.1016/j.jhydrol.2012.08.048

    Article  Google Scholar 

  • Shuttleworth WJ (1989) Micrometeorology of temperate and tropical forest. Philos Trans R Soc Lond B, Biol Sci 324(1223):299–334

    Article  Google Scholar 

  • Spencer SA, van Meerveld HJ (2016) Double funnelling in a mature coastal British Columbia forest: spatial patterns of stemflow after infiltration. Hydrol Process 30(22):4185–4201. https://doi.org/10.1002/hyp.10936

    Article  Google Scholar 

  • Staelens J, De Schrijver A, Verheyen K, Verhoest NE (2006) Spatial variability and temporal stability of throughfall deposition under beech (Fagus sylvatica L.) in relationship to canopy structure. Environ Pollut 142(2):254–263. https://doi.org/10.1016/j.envpol.2005.10.002

  • Staelens J, De Schrijver A, Verheyen K, Verhoest NEC (2008) Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrol Process 22(1):33–45. https://doi.org/10.1002/hyp.6610

  • Strand G-H (2017) A study of variance estimation methods for systematic spatial sampling. Spat Stat 21:226–240

    Article  Google Scholar 

  • Sun X, Onda Y, Chiara S, Kato H, Gomi T (2015) The effect of strip thinning on spatial and temporal variability of throughfall in a Japanese cypress plantation. Hydrol Process 29(24):5058–5070

    Article  Google Scholar 

  • Sun X, Onda Y, Kato H (2014) Incident rainfall partitioning and canopy interception modeling for an abandoned Japanese cypress stand. J For Res 19(3):317–328

    Article  Google Scholar 

  • Thimonier A (1998) Measurement of atmospheric deposition under forest canopies: some recommendations for equipment and sampling design. Environ Monit Assess 52(3):353–387

    Article  Google Scholar 

  • Toba T, Ohta T (2005) An observational study of the factors that influence interception loss in boreal and temperate forests. J Hydrol 313(3–4):208–220

    Article  Google Scholar 

  • Tobón Marin C, Bouten W, Sevink J (2000) Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. J Hydrol 237(1–2):40–57

    Article  Google Scholar 

  • Vachaud G, Passerat de Silans A, Balabanis P, Vauclin M (1985) Temporal stability of spatially measured soil water probability density function 1. Soil Sci Soc Am J 49(4):822–828

    Article  Google Scholar 

  • Van Stan JT II, Pypker TG (2015) A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci Total Environ 536:813–824. https://doi.org/10.1016/j.scitotenv.2015.07.134

    Article  Google Scholar 

  • Van Stan JT II, Van Stan JH, Levia DF Jr (2014) Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species. Int J Biometeorol 58(10):2059–2069. https://doi.org/10.1007/s00484-014-0807-7

    Article  Google Scholar 

  • Van Stan JT, Gay TE, Lewis ES (2016a) Use of multiple correspondence analysis (MCA) to identify interactive meteorological conditions affecting relative throughfall. J Hydrol 533:452–460. https://doi.org/10.1016/j.jhydrol.2015.12.039

    Article  Google Scholar 

  • Van Stan JT, Gordon DA (2018) Mini-review: stemflow as a resource limitation to near-stem soils. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00248

  • Van Stan JT, Lewis ES, Hildebrandt A, Rebmann C, Friesen J (2016b) Impact of interacting bark structure and rainfall conditions on stemflow variability in a temperate beech-oak forest, central Germany. Hydrol Sci J 61(11):2071–2083. https://doi.org/10.1080/02626667.2015.1083104

    Article  Google Scholar 

  • Van Stan JT, Wagner S, Guillemette F, Whitetree A, Lewis J, Silva L, Stubbins A (2017) Temporal dynamics in the concentration, flux, and optical properties of tree-derived dissolved organic matter in an Epiphyte-Laden Oak-Cedar Forest. J Geophys Res Biogeosci 122(11):2982–2997. https://doi.org/10.1002/2017jg004111

    Article  Google Scholar 

  • Verry ES, Timmons D (1977) Precipitation nutrients in the open and under two forests in Minnesota. Can J For Res 7(1):112–119

    Article  Google Scholar 

  • Voss S, Zimmermann B, Zimmermann A (2016) Detecting spatial structures in throughfall data: The effect of extent, sample size, sampling design, and variogram estimation method. J Hydrol 540:527–537. https://doi.org/10.1016/j.jhydrol.2016.06.042

    Article  Google Scholar 

  • Whelan M, Sanger L, Baker M, Anderson J (1998) Spatial patterns of throughfall and mineral ion deposition in a lowland Norway spruce (Picea abies) plantation at the plot scale. Atmos Environ 32(20):3493–3501

    Article  Google Scholar 

  • Wilm HG (1943) Determining net rainfall under a conifer forest. J Agric Res 67:501–513

    Google Scholar 

  • Wullaert H, Pohlert T, Boy J, Valarezo C, Wilcke W (2009) Spatial throughfall heterogeneity in a montane rain forest in Ecuador: extent, temporal stability and drivers. J Hydrol 377(1–2):71–79

    Article  Google Scholar 

  • Yankine SA, Van Stan J, Mesta DC, Côté J-F, Hildebrandt A, Friesen J, Maldonado G (2017) What controls stemflow? A LiDAR-based investigation of individual tree canopy structure, neighborhood conditions, and meteorological factors. In: AGU fall meeting abstracts

    Google Scholar 

  • Yarie J (1980) The role of understory vegetation in the nutrient cycle of forested ecosystems in the mountain hemlock biogeoclimatic zone. Ecology 61(6):1498–1514

    Article  Google Scholar 

  • Zehe E, Graeff T, Morgner M, Bauer A, Bronstert A (2010) Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains. Hydrol Earth Syst Sci 14(6):873

    Article  Google Scholar 

  • Zhang Y, Wang X, Pan Y, Hu R (2017) Intrastorm stemflow variability of a xerophytic shrub within a water-limited arid desert ecosystem of northern China. 寒旱区科学 (英文版) (2017 年 05):495–502

    Google Scholar 

  • Zheng J, Fan J, Zhang F, Yan S, Xiang Y (2018) Rainfall partitioning into throughfall, stemflow and interception loss by maize canopy on the semi-arid Loess Plateau of China. Agric Water Manag 195:25–36

    Article  Google Scholar 

  • Zimmermann A, Germer S, Neill C, Krusche AV, Elsenbeer H (2008) Spatio-temporal patterns of throughfall and solute deposition in an open tropical rain forest. J Hydrol 360(1–4):87–102

    Article  Google Scholar 

  • Zimmermann A, Uber M, Zimmermann B, Levia DF (2015) Predictability of stemflow in a species-rich tropical forest. Hydrol Process 29(23):4947–4956. https://doi.org/10.1002/hyp.10554

    Article  Google Scholar 

  • Zimmermann A, Voss S, Metzger JC, Hildebrandt A, Zimmermann B (2016) Capturing heterogeneity: the role of a study area’s extent for estimating mean throughfall. J Hydrol 542:781–789

    Article  Google Scholar 

  • Zimmermann A, Wilcke W, Elsenbeer H (2007) Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador. J Hydrol 343(1–2):80–96. https://doi.org/10.1016/j.jhydrol.2007.06.012

    Article  Google Scholar 

  • Zimmermann A, Zimmermann B (2014) Requirements for throughfall monitoring: the roles of temporal scale and canopy complexity. Agric For Meteorol 189:125–139

    Article  Google Scholar 

  • Zimmermann A, Zimmermann B, Elsenbeer H (2009) Rainfall redistribution in a tropical forest: spatial and temporal patterns. Water Resour Res 45(11). https://doi.org/10.1029/2008wr007470

  • Zimmermann B, Zimmermann A, Lark RM, Elsenbeer H (2010) Sampling procedures for throughfall monitoring: a simulation study. Water Resour Res 46(1). https://doi.org/10.1029/2009wr007776

Download references

Acknowledgements

AH and JM were funded by the German Research Foundation (DFG) CRC 1076 “AquaDiva” and the state of Thuringia “ProExzellenz” initiative AquaDiv@Jena (107-1). Student support for SAY was provided by the US National Science Foundation (EAR-1518726).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Hildebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Stan, J.T., Hildebrandt, A., Friesen, J., Metzger, J.C., Yankine, S.A. (2020). Spatial Variability and Temporal Stability of Local Net Precipitation Patterns . In: Van Stan, II, J., Gutmann, E., Friesen, J. (eds) Precipitation Partitioning by Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-29702-2_6

Download citation

Publish with us

Policies and ethics