Advertisement

Key Questions on the Evaporation and Transport of Intercepted Precipitation Open image in new window

  • Scott T. AllenEmail author
  • Doug P. Aubrey
  • Maaike Y. Bader
  • Miriam Coenders-Gerrits
  • Jan Friesen
  • Ethan D. Gutmann
  • François Guillemette
  • César Jiménez-Rodríguez
  • Richard F. Keim
  • Anna Klamerus-Iwan
  • Glenda Mendieta-Leiva
  • Philipp Porada
  • Robert G. Qualls
  • Bart Schilperoort
  • Aron Stubbins
  • John T. Van Stan II
Chapter
  • 137 Downloads

Abstract

The interception of precipitation by vegetation has important consequences for climate and water resources. Although canopy interception has been studied for centuries, many fundamental unknowns remain. We present persistent questions that reflect challenges in measuring, representing, and understanding how terrestrial ecosystems intercept, partition, and transport precipitation—down to soils or back to the atmosphere. In summary of this book, we outline future needs and simultaneously provide a primer for those interested in precipitation interception processes.

Keywords

Precipitation Vegetation Throughfall Stemflow Evaporation Hydrology Interception 

References

  1. Alekseychik P, Mammarella I, Launiainen S et al (2013) Evolution of the nocturnal decoupled layer in a pine forest canopy. Agric For Meteorol 174–175:15–27.  https://doi.org/10.1016/j.agrformet.2013.01.011CrossRefGoogle Scholar
  2. Allen ST, Brooks JR, Keim RF, et al (2014) The role of pre-event canopy storage in throughfall and stemflow by using isotopic tracers. Ecohydrology 7.  https://doi.org/10.1002/eco.1408
  3. Allen ST, Edwards BL, Reba ML, Keim RF (2016) Sub-canopy evapotranspiration from floating vegetation and open water in a swamp forest. Wetlands 36:681–688.  https://doi.org/10.1007/s13157-016-0778-zCrossRefGoogle Scholar
  4. Allen ST, Keim RF, Barnard HR, et al (2017a) The role of stable isotopes in understanding rainfall interception processes: a review. Wiley Interdiscip Rev Water 4.  https://doi.org/10.1002/wat2.1187
  5. Allen ST, Reba ML, Edwards BL, Keim RF (2017b) Evaporation and the subcanopy energy environment in a flooded forest. Hydrol Process 31:2860–2871.  https://doi.org/10.1002/hyp.11227
  6. Allen ST, Keim RF, Dean TJ (2019) Contrasting effects of flooding on tree growth and stand density determine aboveground production, in baldcypress forests. For Ecol Manag 432:345–355.  https://doi.org/10.1016/j.foreco.2018.09.041CrossRefGoogle Scholar
  7. Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M et al (2017) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev 92:326–340.  https://doi.org/10.1111/brv.12231CrossRefGoogle Scholar
  8. Bachmair S, Weiler M (2012) Hillslope characteristics as controls of subsurface flow variability. Hydrol Earth Syst Sci 16:3699–3715.  https://doi.org/10.5194/hess-16-3699-2012CrossRefGoogle Scholar
  9. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research, vol 4. Proceedings of the VIIth international congress on photosynthesis providence, Rhode Island, USA, 10–15 Aug 1986. Springer Netherlands, Dordrecht, pp 221–224Google Scholar
  10. Baptista MD, Livesley SJ, Parmehr EG et al (2018) Variation in leaf area density drives the rainfall storage capacity of individual urban tree species. Hydrol Process 32:3729–3740.  https://doi.org/10.1002/hyp.13255CrossRefGoogle Scholar
  11. Barbier S, Balandier P, Gosselin F (2009) Influence of several tree traits on rainfall partitioning in temperate and boreal forests: a review. Ann For Sci 66:602–602.  https://doi.org/10.1051/forest/2009041CrossRefGoogle Scholar
  12. Beard KH, Vogt KA, Kulmatiski A (2002) Top-down effects of a terrestrial frog on forest nutrient dynamics. Oecologia 133:583–593.  https://doi.org/10.1007/s00442-002-1071-9CrossRefGoogle Scholar
  13. Berg B, McClaugherty C (2014) Decomposition as a process: some main features. In: Berg B, McClaugherty C (eds) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin, pp 11–34CrossRefGoogle Scholar
  14. Berry ZC, and Goldsmith GR (2019) Diffuse light and wetting differentially affect tropical tree leaf photosynthesis. New Phytologist. https://doi.org/10.1111/nph.16121
  15. Berkelhammer M, Hu J, Bailey A, et al (2013) The nocturnal water cycle in an open-canopy forest. J Geophys Res Atmospheres 118:10,225–10,242.  https://doi.org/10.1002/jgrd.50701
  16. Błońska E, Klamerus-Iwan A, Łagan S, Lasota J (2018) Changes to the water repellency and storage of different species of deadwood based on decomposition rate in a temperate climate. Ecohydrology 11:e2023.  https://doi.org/10.1002/eco.2023CrossRefGoogle Scholar
  17. Bouten W, Swart PJF, De Water E (1991) Microwave transmission, a new tool in forest hydrological research. J Hydrol 124:119–130.  https://doi.org/10.1016/0022-1694(91)90009-7
  18. Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agric Ecosyst Environ 104:185–228.  https://doi.org/10.1016/j.agee.2004.01.015CrossRefGoogle Scholar
  19. Bruijnzeel LS, Eugster W, Burkard R (2006) Fog as a hydrologic input. In: Encyclopedia of hydrological sciencesGoogle Scholar
  20. Bui EN, Box JE (1992) Stemflow, rain throughfall, and erosion under canopies of corn and sorghum. Soil Sci Soc Am J 56(1):242–247CrossRefGoogle Scholar
  21. Calvo-Alvarado JC, Jiménez-Rodríguez CD, Calvo-Obando AJ et al (2018) Interception of rainfall in successional tropical dry forests in Brazil and Costa Rica. Geosciences 8:486.  https://doi.org/10.3390/geosciences8120486CrossRefGoogle Scholar
  22. Carlyle-Moses DE, Gash JH (2011) Rainfall interception loss by forest canopies. Forest hydrology and biogeochemistry. Springer, Netherlands, pp 407–423CrossRefGoogle Scholar
  23. Carlyle-Moses DE, Price AG (2007) Modelling canopy interception loss from a Madrean pine-oak stand, northeastern Mexico. Hydrol Process 21:2572–2580.  https://doi.org/10.1002/hyp.6790CrossRefGoogle Scholar
  24. Cayuela C, Llorens P, Sánchez-Costa E et al (2018a) Effect of biotic and abiotic factors on inter- and intra-event variability in stemflow rates in oak and pine stands in a mediterranean mountain area. J Hydrol 560:396–406.  https://doi.org/10.1016/j.jhydrol.2018.03.050CrossRefGoogle Scholar
  25. Cayuela C, Llorens P, Sánchez-Costa E, Latron J (2018b) Modification of the isotopic composition of rainfall by throughfall and stemflow: the case of Scots pine and downy oak forests under mediterranean conditions. Ecohydrology 11:e2025.  https://doi.org/10.1002/eco.2025CrossRefGoogle Scholar
  26. Charlier JB, Moussa R, Cattan P, Cabidoche YM, Voltz M (2009) Modelling runoff at the plot scale taking into account rainfall partitioning by vegetation: application to stemflow of banana (Musa spp.) plant. Hydrol Earth Syst Sci 13:2151–2168.  https://doi.org/10.5194/hess-13-2151-2009CrossRefGoogle Scholar
  27. Cisneros Vaca C, van der Tol C, Ghimire CP (2018) The influence of long-term changes in canopy structure on rainfall interception loss: a case study in Speulderbos, the Netherlands. Hydrol Earth Syst Sci 22:3701–3719.  https://doi.org/10.5194/hess-22-3701-2018CrossRefGoogle Scholar
  28. Colbo K, Weller RA (2009) Accuracy of the IMET sensor package in the subtropics. J Atmos Ocean Technol 26:1867–1890.  https://doi.org/10.1175/2009JTECHO667.1CrossRefGoogle Scholar
  29. Davie TJA, Durocher MG (1997) A model to consider the spatial variability of rainfall partitioning within deciduous canopy. II. Model parameterisation and testing. Hydrol Process 11:1525–1540.  https://doi.org/10.1002/(SICI)1099-1085(199709)11:11%3c1525:AID-HYP483%3e3.0.CO;2-SCrossRefGoogle Scholar
  30. Dawson TE, Goldsmith GR (2018) The value of wet leaves. New Phytol 219:1156–1169.  https://doi.org/10.1111/nph.15307CrossRefGoogle Scholar
  31. Deguchi A, Hattori S, Park H-T (2006) The influence of seasonal changes in canopy structure on interception loss: application of the revised gash model. J Hydrol 318:80–102.  https://doi.org/10.1016/j.jhydrol.2005.06.005CrossRefGoogle Scholar
  32. Dietz J, Hölscher D, Leuschner C, Hendrayanto (2006) Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia. For Ecol Manag 237:170–178.  https://doi.org/10.1016/j.foreco.2006.09.044
  33. Draaijers GPJ, Erisman JW, Leeuwen NFMV et al (1997) The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmos Environ 31:387–397.  https://doi.org/10.1016/S1352-2310(96)00164-1CrossRefGoogle Scholar
  34. Dunin FX, O’Loughlin EM, Reyenga W (1988) Interception loss from eucalypt forest: lysimeter determination of hourly rates for long term evaluation. Hydrol Process 2:315–329.  https://doi.org/10.1002/hyp.3360020403CrossRefGoogle Scholar
  35. Dunkerley DL (2009) Evaporation of impact water droplets in interception processes: historical precedence of the hypothesis and a brief literature overview. J Hydrol 376:599–604.  https://doi.org/10.1016/j.jhydrol.2009.08.004CrossRefGoogle Scholar
  36. Fathizadeh O, Hosseini SM, Zimmermann A et al (2017) Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci Total Environ 601–602:1824–1837.  https://doi.org/10.1016/j.scitotenv.2017.05.233CrossRefGoogle Scholar
  37. Flerchinger GN, Reba ML, Link TE, Marks D (2015) Modeling temperature and humidity profiles within forest canopies. Agric For Meteorol 213:251–262.  https://doi.org/10.1016/j.agrformet.2015.07.007CrossRefGoogle Scholar
  38. Foken T (2008) Micrometeorology. Springer Publishing, New York, NY, USAGoogle Scholar
  39. Friesen J, Lundquist J, Van Stan JT (2015) Evolution of forest precipitation water storage measurement methods. Hydrol Process 29:2504–2520.  https://doi.org/10.1002/hyp.10376CrossRefGoogle Scholar
  40. Froelich NJ, Schmid HP (2006) Flow divergence and density flows above and below a deciduous forest: Part II. Below-canopy thermotopographic flows. Agric For Meteorol 138:29–43.  https://doi.org/10.1016/j.agrformet.2006.03.013CrossRefGoogle Scholar
  41. Gash JHC, Valente F, David JS (1999) Estimates and measurements of evaporation from wet, sparse pine forest in Portugal. Agric For Meteorol 94:149–158.  https://doi.org/10.1016/S0168-1923(99)00008-8CrossRefGoogle Scholar
  42. Gat JR, Matsui E (1991) Atmospheric water balance in the Amazon basin: an isotopic evapotranspiration model. J Geophys Res Atmos 96:13179–13188.  https://doi.org/10.1029/91JD00054CrossRefGoogle Scholar
  43. Geddes N, Dunkerley D (1999) The influence of organic litter on the erosive effects of raindrops and of gravity drops released from desert shrubs. CATENA 36:303–313.  https://doi.org/10.1016/S0341-8162(99)00050-8CrossRefGoogle Scholar
  44. Gerrits AMJ, Pfister L, Savenije HHG (2010) Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol Process 24:3011–3025.  https://doi.org/10.1002/hyp.7712CrossRefGoogle Scholar
  45. Gerrits AMJ, Savenije HHG, Veling EJM, Pfister L (2009) Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resour Res 45.  https://doi.org/10.1029/2008wr007308
  46. Gerwing JJ, Farias DL (2000) Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. J Trop Ecol 16:327–335CrossRefGoogle Scholar
  47. Gray LJ (1997) Organic matter dynamics in Kings Creek, Konza Frairie, Kansas, USA. J North Am Benthol Soc 16:50–54.  https://doi.org/10.2307/1468232CrossRefGoogle Scholar
  48. Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148:185–206.  https://doi.org/10.1016/S0378-1127(00)00535-1CrossRefGoogle Scholar
  49. Guswa AJ, Spence CM (2012) Effect of throughfall variability on recharge: application to hemlock and deciduous forests in western Massachusetts. Ecohydrology 5:563–574.  https://doi.org/10.1002/eco.281CrossRefGoogle Scholar
  50. Hancock NH, Crowther JM (1979) A technique for the direct measurement of water storage on a forest canopy. J Hydrol 41:105–122.  https://doi.org/10.1016/0022-1694(79)90109-4CrossRefGoogle Scholar
  51. Hedstrom NR, Pomeroy JW (1998) Measurements and modelling of snow interception in the boreal forest. Hydrol Process 12:1611–1625.  https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11%3c1611:AID-HYP684%3e3.0.CO;2-4CrossRefGoogle Scholar
  52. Herwitz SR (1985) Interception storage capacities of tropical rainforest canopy trees. J Hydrol 77:237–252.  https://doi.org/10.1016/0022-1694(85)90209-4CrossRefGoogle Scholar
  53. Herwitz SR (1987) Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stemflow and throughfall generation. Earth Surf Process Landf 12:425–432.  https://doi.org/10.1002/esp.3290120408CrossRefGoogle Scholar
  54. Hiscox AL, Rudnicki M, Miller DR (2015) Understanding turbulent kinetic energy (TKE) stationarity within a forest canopy. Agric For Meteorol 214–215:124–133.  https://doi.org/10.1016/j.agrformet.2015.08.254CrossRefGoogle Scholar
  55. Holder CD (2007) Leaf water repellency of species in Guatemala and Colorado (USA) and its significance to forest hydrology studies. J Hydrol 336:147–154.  https://doi.org/10.1016/j.jhydrol.2006.12.018CrossRefGoogle Scholar
  56. Hölscher D, Köhler L, van Dijk AIJM, Bruijnzeel LA (Sampurno) (2004) The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. J Hydrol 292:308–322.  https://doi.org/10.1016/j.jhydrol.2004.01.015
  57. Hopp L, McDonnell JJ (2011) Examining the role of throughfall patterns on subsurface stormflow generation. J Hydrol 409:460–471.  https://doi.org/10.1016/j.jhydrol.2011.08.044CrossRefGoogle Scholar
  58. Hoppe E (1896) Regenmessung unter Baumkronen. Mitt. a. d. Forstl. Verw. Österreichs, H. XXI, W. Frick, WienGoogle Scholar
  59. Horton RE (1919) Rainfall interception. Mon Weather Rev 47(9):603–623CrossRefGoogle Scholar
  60. Howard DH, Stan JTV, Whitetree A et al (2018) Interstorm variability in the biolability of tree-derived dissolved organic matter (tree-DOM) in throughfall and stemflow. Forests 9:236.  https://doi.org/10.3390/f9050236CrossRefGoogle Scholar
  61. Huang YS, Chen SS, Lin TP (2005) Continuous monitoring of water loading of trees and canopy rainfall interception using the strain gauge method. J Hydrol 311:1–7.  https://doi.org/10.1016/j.jhydrol.2004.08.036CrossRefGoogle Scholar
  62. Huber L, Gillespie TJ (1992) Modeling leaf wetness in relation to plant disease epidemiology. Annu Rev Phytopathol 30:553–577.  https://doi.org/10.1146/annurev.py.30.090192.003005CrossRefGoogle Scholar
  63. Ikawa R, Yamamoto T, Shimada J, Shimizu T (2011) Temporal variations of isotopic compositions in gross rainfall, throughfall, and stemflow under a Japanese cedar forest during a typhoon event. Hydrol Res Lett 5:32–36CrossRefGoogle Scholar
  64. Jarvis A (2000) Measuring and modelling the impact of land-use change in tropical hillsides: the role of cloud interception to epiphytes. Adv Environ Monit Model 1:118–148Google Scholar
  65. Johnson MS, Lehmann J (2006) Double-funneling of trees: stemflow and root-induced preferential flow. Écoscience 13:324–333.  https://doi.org/10.2980/i1195-6860-13-3-324.1CrossRefGoogle Scholar
  66. Keen B, Cox J, Morris S, Dalby T (2010) Stemflow runoff contributes to soil erosion at the base of macadamia trees. Soil solutions for a changing world. Brisbane, Australia, pp 240–243Google Scholar
  67. Keim RF, Link TE (2018) Linked spatial variability of throughfall amount and intensity during rainfall in a coniferous forest. Agric For Meteorol 248:15–21.  https://doi.org/10.1016/j.agrformet.2017.09.006CrossRefGoogle Scholar
  68. Keim RF, Skaugset AE (2003) Modelling effects of forest canopies on slope stability. Hydrol Process 17:1457–1467.  https://doi.org/10.1002/hyp.5121CrossRefGoogle Scholar
  69. Keim RF, Skaugset AE (2004) A linear system model of dynamic throughfall rates beneath forest canopies. Water Resour Res 40:  https://doi.org/10.1029/2003wr002875
  70. Keim RF, Skaugset AE, Weiler M (2006) Storage of water on vegetation under simulated rainfall of varying intensity. Adv Water Resour 29:974–986.  https://doi.org/10.1016/j.advwatres.2005.07.017CrossRefGoogle Scholar
  71. Kittredge J, Loughead HJ, Mazurak A (1941) Interception and stemflow in a pine plantation. J For 39:505–522.  https://doi.org/10.1093/jof/39.6.505CrossRefGoogle Scholar
  72. Klaassen W, Bosveld F, de Water E (1998) Water storage and evaporation as constituents of rainfall interception. J Hydrol 212–213:36–50.  https://doi.org/10.1016/S0022-1694(98)00200-5CrossRefGoogle Scholar
  73. Klamerus-Iwan A, Błońska E (2018) Canopy storage capacity and wettability of leaves and needles: the effect of water temperature changes. J Hydrol 559:534–540.  https://doi.org/10.1016/j.jhydrol.2018.02.032CrossRefGoogle Scholar
  74. Klamerus-Iwan A, Błońska E, Lasota J et al (2018) Seasonal variability of leaf water capacity and wettability under the influence of pollution in different city zones. Atmos Pollut Res 9:455–463.  https://doi.org/10.1016/j.apr.2017.11.006CrossRefGoogle Scholar
  75. Klamerus-Iwan A, Witek W (2018) Variability in the wettability and water storage capacity of common Oak leaves (Quercus robur L.). Water 10:695.  https://doi.org/10.3390/w10060695
  76. le Mellec A, Gerold G, Michalzik B (2011) Insect herbivory, organic matter deposition and effects on belowground organic matter fluxes in a central European oak forest. Plant Soil 342:393–403.  https://doi.org/10.1007/s11104-010-0704-8CrossRefGoogle Scholar
  77. Levia DF, Germer S (2015) A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev Geophys 53:2015RG000479.  https://doi.org/10.1002/2015rg000479
  78. Levia DF, Hudson SA, Llorens P, Nanko K (2017) Throughfall drop size distributions: a review and prospectus for future research. Wiley Interdiscip Rev Water 4:e1225.  https://doi.org/10.1002/wat2.1225CrossRefGoogle Scholar
  79. Levia DF, Keim RF, Carlyle-Moses DE, Frost EE (2011a) Throughfall and stemflow in wooded ecosystems. In: Levia DF, Carlyle-Moses D, Tanaka T (eds) Forest hydrology and biogeochemistry. Springer, Netherlands, pp 425–443CrossRefGoogle Scholar
  80. Levia DF, Van Stan JT, Siegert CM et al (2011b) Atmospheric deposition and corresponding variability of stemflow chemistry across temporal scales in a mid-Atlantic broadleaved deciduous forest. Atmos Environ 45:3046–3054.  https://doi.org/10.1016/j.atmosenv.2011.03.022CrossRefGoogle Scholar
  81. Levia DF Jr, Frost E (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol Amst 274:1–29CrossRefGoogle Scholar
  82. Leyton L, Reynolds E, Thompson F (1967) Rainfall interception in forest and moorland. In: Sopper W, Lull HW (eds) International symposium on forest hydrology, University Park, PA. Pergamon Press, New York, NY, USA, pp 163–178Google Scholar
  83. Lhomme JP, Montes C (2014) Generalized combination equations for canopy evaporation under dry and wet conditions. Hydrol Earth Syst Sci 18:1137–1149.  https://doi.org/10.5194/hess-18-1137-2014CrossRefGoogle Scholar
  84. Li X-Y, Hu X, Zhang Z-H, et al (2013) Shrub hydropedology: preferential water availability to deep soil layer. Vadose Zone J 12.  https://doi.org/10.2136/vzj2013.01.0006
  85. Li X, Xiao Q, Niu J et al (2016) Process-based rainfall interception by small trees in Northern China: the effect of rainfall traits and crown structure characteristics. Agric For Meteorol 218–219:65–73.  https://doi.org/10.1016/j.agrformet.2015.11.017CrossRefGoogle Scholar
  86. Li X-Y, Yang Z-P, Li Y-T, Lin H (2009) Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils. Hydrol Earth Syst Sci Discuss 6:1551–1580CrossRefGoogle Scholar
  87. Liang W-L, Kosugi K, Mizuyama T (2009) A three-dimensional model of the effect of stemflow on soil water dynamics around a tree on a hillslope. J Hydrol 366:62–75.  https://doi.org/10.1016/j.jhydrol.2008.12.009CrossRefGoogle Scholar
  88. Liang W-L, Kosugi K, Mizuyama T (2011) Soil water dynamics around a tree on a hillslope with or without rainwater supplied by stemflow. Water Resour Res 47.  https://doi.org/10.1029/2010wr009856
  89. Link TE, Unsworth M, Marks D (2004) The dynamics of rainfall interception by a seasonal temperate rainforest. Agric For Meteorol 124:171–191CrossRefGoogle Scholar
  90. Llorens P, Gallart F (2000) A simplified method for forest water storage capacity measurement. J Hydrol 240:131–144.  https://doi.org/10.1016/S0022-1694(00)00339-5CrossRefGoogle Scholar
  91. Lohbeck M, Poorter L, Martínez-Ramos M et al (2014) Changing drivers of species dominance during tropical forest succession. Funct Ecol 28:1052–1058.  https://doi.org/10.1111/1365-2435.12240CrossRefGoogle Scholar
  92. Lovett GM, Lindberg SE (1984) Dry deposition and canopy exchange in a mixed Oak forest as determined by analysis of throughfall. J Appl Ecol 21:1013–1027.  https://doi.org/10.2307/2405064CrossRefGoogle Scholar
  93. Marin CT, Bouten W, Sevink J (2000) Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. J Hydrol 237:40–57.  https://doi.org/10.1016/S0022-1694(00)00301-2CrossRefGoogle Scholar
  94. Mesas-Carrascosa FJ, Verdú Santano D, Meroño JE et al (2015) Open source hardware to monitor environmental parameters in precision agriculture. Biosyst Eng 137:73–83.  https://doi.org/10.1016/j.biosystemseng.2015.07.005CrossRefGoogle Scholar
  95. Metzger JC, Wutzler T, Valle ND et al (2017) Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrol Process 31:3783–3795.  https://doi.org/10.1002/hyp.11274CrossRefGoogle Scholar
  96. Miralles DG, Gash JH, Holmes TRH et al (2010) Global canopy interception from satellite observations. J Geophys Res Atmos 115:D16122.  https://doi.org/10.1029/2009JD013530CrossRefGoogle Scholar
  97. Molotch NP, Blanken PD, Williams MW et al (2007) Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems. Hydrol Process 21:1567–1575.  https://doi.org/10.1002/hyp.6719CrossRefGoogle Scholar
  98. Monteith JL (1977) Resistance of a partially wet canopy: whose equation fails? Bound-Layer Meteorol 12:379–383.  https://doi.org/10.1007/BF00121475CrossRefGoogle Scholar
  99. Murakami S (2006) A proposal for a new forest canopy interception mechanism: splash droplet evaporation. J Hydrol 319:72–82.  https://doi.org/10.1016/j.jhydrol.2005.07.002CrossRefGoogle Scholar
  100. Murray SJ (2014) Trends in 20th century global rainfall interception as simulated by a dynamic global vegetation model: implications for global water resources. Ecohydrology 7:102–114.  https://doi.org/10.1002/eco.1325CrossRefGoogle Scholar
  101. Muzylo A, Llorens P, Valente F et al (2009) A review of rainfall interception modelling. J Hydrol 370:191–206.  https://doi.org/10.1016/j.jhydrol.2009.02.058CrossRefGoogle Scholar
  102. Nadkarni NM, Sumera MM (2004) Old-growth forest canopy structure and its relationship to throughfall interception. For Sci 50:290–298.  https://doi.org/10.1093/forestscience/50.3.290CrossRefGoogle Scholar
  103. Nanko K, Hudson SA, Levia DF (2016) Differences in throughfall drop size distributions in the presence and absence of foliage. Hydrol Sci J 61:620–627.  https://doi.org/10.1080/02626667.2015.1052454CrossRefGoogle Scholar
  104. Nanko K, Watanabe A, Hotta N, Suzuki M (2013) Physical interpretation of the difference in drop size distributions of leaf drips among tree species. Agric For Meteorol 169:74–84.  https://doi.org/10.1016/j.agrformet.2012.09.018CrossRefGoogle Scholar
  105. Ney CE (1894) Über die Messung des an den Schäften der Bäume herabfließenden Wassers. Mitt ad forstl Versuchswesen Österr 17:115Google Scholar
  106. Olszyczka B, Crowther JM (1981) The application of gamma-ray attenuation to the determination of canopy mass and canopy surfacewater storage. J Hydrol 49:355–368.  https://doi.org/10.1016/S0022-1694(81)80019-4CrossRefGoogle Scholar
  107. Pearce AJ, Rowe LK, Stewart JB (1980) Nighttime, wet canopy evaporation rates and the water balance of an evergreen mixed forest. Water Resour Res 16:955–959.  https://doi.org/10.1029/WR016i005p00955CrossRefGoogle Scholar
  108. Porada P, Stan JTV, Kleidon A (2018) Significant contribution of non-vascular vegetation to global rainfall interception. Nat Geosci 11:563.  https://doi.org/10.1038/s41561-018-0176-7CrossRefGoogle Scholar
  109. Puckett LJ (1990) Estimates of ion sources in deciduous and coniferous throughfall. Atmos Environ Part Gen Top 24:545–555.  https://doi.org/10.1016/0960-1686(90)90009-CCrossRefGoogle Scholar
  110. Pypker TG, Bond BJ, Link TE et al (2005) The importance of canopy structure in controlling the interception loss of rainfall: examples from a young and an old-growth Douglas-fir forest. Agric For Meteorol 130:113–129.  https://doi.org/10.1016/j.agrformet.2005.03.003CrossRefGoogle Scholar
  111. Pypker TG, Unsworth MH, Bond BJ (2006) The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Can J For Res 36:819–832.  https://doi.org/10.1139/x05-286CrossRefGoogle Scholar
  112. Qualls RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586.  https://doi.org/10.2136/sssaj1992.03615995005600020038xCrossRefGoogle Scholar
  113. Roth BE, Slatton KC, Cohen MJ (2007) On the potential for high-resolution lidar to improve rainfall interception estimates in forest ecosystems. Front Ecol Environ 5:421–428.  https://doi.org/10.1890/060119.1CrossRefGoogle Scholar
  114. Samaniego L, Kumar R, Attinger S (2010) Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour Res 46.  https://doi.org/10.1029/2008wr007327
  115. Schellekens J, Bruijnzeel LA, Scatena FN et al (2000) Evaporation from a tropical rain forest, luquillo experimental forest, eastern puerto rico. Water Resour Res 36:2183–2196.  https://doi.org/10.1029/2000WR900074CrossRefGoogle Scholar
  116. Schilperoort B, Coenders-Gerrits M, Luxemburg W et al (2018) Technical note: using distributed temperature sensing for Bowen ratio evaporation measurements. Hydrol Earth Syst Sci 22:819–830.  https://doi.org/10.5194/hess-22-819-2018CrossRefGoogle Scholar
  117. Schwärzel K, Ebermann S, Schalling N (2012) Evidence of double-funneling effect of beech trees by visualization of flow pathways using dye tracer. J Hydrol 470–471:184–192.  https://doi.org/10.1016/j.jhydrol.2012.08.048CrossRefGoogle Scholar
  118. Shure DJ, Lewis AJ (1973) Dew formation and stem flow on common ragweed (Ambrosia artemisiifolia). Ecology 54(5):1152–1155.  https://doi.org/10.2307/1935583CrossRefGoogle Scholar
  119. Shuttleworth WJ (1989) Micrometeorology of temperate and tropical forest. Philos Trans R Soc Lond B 299–334Google Scholar
  120. Shuttleworth WJ, Calder IR (1979) Has the Priestley-Taylor equation any relevance to forest evaporation? J Appl Meteorol 18:639–646.  https://doi.org/10.1175/1520-0450(1979)018%3c0639:HTPTEA%3e2.0.CO;2CrossRefGoogle Scholar
  121. Spencer SA, van Meerveld HJ (2016) Double funnelling in a mature coastal British Columbia forest: spatial patterns of stemflow after infiltration. Hydrol Process 30:4185–4201.  https://doi.org/10.1002/hyp.10936CrossRefGoogle Scholar
  122. Staelens J, De Schrijver A, Verheyen K, Verhoest NEC (2006) Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover. J Hydrol 330:651–662.  https://doi.org/10.1016/j.jhydrol.2006.04.032CrossRefGoogle Scholar
  123. Stanton DE, Chávez JH, Villegas L et al (2014) Epiphytes improve host plant water use by microenvironment modification. Funct Ecol 28:1274–1283.  https://doi.org/10.1111/1365-2435.12249CrossRefGoogle Scholar
  124. Stewart JB (1977) Evaporation from the wet canopy of a pine forest. Water Resour Res 13:915–921.  https://doi.org/10.1029/WR013i006p00915CrossRefGoogle Scholar
  125. Swiecki TJ, Bernhardt EA (2016) Sudden Oak death in California. In: Paine TD, Lieutier F (eds) Insects and diseases of mediterranean forest systems. Springer International Publishing, Cham, pp 731–756CrossRefGoogle Scholar
  126. Tobón C, Köhler L, Frumau KFA, et al (2010) Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage and evaporation. Trop Montane Cloud For Sci Conserv Manag 261–267Google Scholar
  127. van der Ent RJ, Wang-Erlandsson L, Keys PW, Savenije HHG (2014) Contrasting roles of interception and transpiration in the hydrological cycle—Part 2: moisture recycling. Earth Syst Dynam 5:471–489.  https://doi.org/10.5194/esd-5-471-2014CrossRefGoogle Scholar
  128. van Dijk AIJM, Gash JH, van Gorsel E et al (2015) Rainfall interception and the coupled surface water and energy balance. Agric For Meteorol 214–215:402–415.  https://doi.org/10.1016/j.agrformet.2015.09.006CrossRefGoogle Scholar
  129. Van Stan JT, Gordon DA (2018) Mini-review: stemflow as a resource limitation to near-stem soils. Front Plant Sci 9.  https://doi.org/10.3389/fpls.2018.00248
  130. Van Stan JT, Lewis ES, Hildebrandt A et al (2016) Impact of interacting bark structure and rainfall conditions on stemflow variability in a temperate beech-oak forest, central Germany. Hydrol Sci J 61:2071–2083.  https://doi.org/10.1080/02626667.2015.1083104CrossRefGoogle Scholar
  131. Van Stan JT, Coenders-Gerrits M, Dibble M et al (2017a) Effects of phenology and meteorological disturbance on litter rainfall interception for a Pinus elliottii stand in the Southeastern United States. Hydrol Process 31:3719–3728.  https://doi.org/10.1002/hyp.11292CrossRefGoogle Scholar
  132. Van Stan JT, Norman Z, Meghoo A et al (2017b) Edge-to-stem variability in wet-canopy evaporation from an urban tree row. Bound-Layer Meteorol 165:295–310.  https://doi.org/10.1007/s10546-017-0277-7CrossRefGoogle Scholar
  133. Van Stan JT, Wagner S, Guillemette F et al (2017c) Temporal dynamics in the concentration, flux, and optical properties of tree-derived dissolved organic matter in an epiphyte-laden oak-cedar forest. J Geophys Res Biogeosci 122:2982–2997.  https://doi.org/10.1002/2017JG004111CrossRefGoogle Scholar
  134. Van Stan JT, Pypker TG (2015) A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci Total Environ 536:813–824.  https://doi.org/10.1016/j.scitotenv.2015.07.134CrossRefGoogle Scholar
  135. Van Stan JT, Stubbins A (2018) Tree-DOM: dissolved organic matter in throughfall and stemflow. Limnol Oceanogr Lett 3:199–214.  https://doi.org/10.1002/lol2.10059CrossRefGoogle Scholar
  136. Victoria RL, Martinelli LA, Mortatti J, Richey J (1991) Mechanisms of water recycling in the Amazon basin: isotopic insights. Ambio 20:384–387Google Scholar
  137. Vrugt JA, Dekker SC, Bouten W (2003) Identification of rainfall interception model parameters from measurements of throughfall and forest canopy storage. Water Resour Res 39.  https://doi.org/10.1029/2003wr002013
  138. Wicht C (1941) An approach to the study of rainfall interception by forest canopies. J South Afr For Assoc 6(1):54–70Google Scholar
  139. Wickland K, Neff J, Aiken G (2007) Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems 10:1323–1340CrossRefGoogle Scholar
  140. Xiao Q, McPherson EG (2016) Surface water storage capacity of twenty tree species in Davis, California. J Environ Qual 45:188–198.  https://doi.org/10.2134/jeq2015.02.0092CrossRefGoogle Scholar
  141. Zimmermann B, Zimmermann A, Scheckenbach HL et al (2013) Changes in rainfall interception along a secondary forest succession gradient in lowland Panama. Hydrol Earth Syst Sci 17:4659–4670.  https://doi.org/10.5194/hess-17-4659-2013CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Scott T. Allen
    • 1
    Email author
  • Doug P. Aubrey
    • 2
  • Maaike Y. Bader
    • 3
  • Miriam Coenders-Gerrits
    • 5
  • Jan Friesen
    • 6
  • Ethan D. Gutmann
    • 7
  • François Guillemette
    • 8
  • César Jiménez-Rodríguez
    • 5
  • Richard F. Keim
    • 9
  • Anna Klamerus-Iwan
    • 10
  • Glenda Mendieta-Leiva
    • 3
    • 4
  • Philipp Porada
    • 11
  • Robert G. Qualls
    • 12
  • Bart Schilperoort
    • 5
  • Aron Stubbins
    • 13
  • John T. Van Stan II
    • 14
  1. 1.Department of Environmental System ScienceETH ZurichZurichSwitzerland
  2. 2.Savannah River Ecology LaboratoryWarnell School of Forestry and Natural Resources, University of GeorgiaAthensUSA
  3. 3.Faculty of GeographyUniversity of MarburgMarburgGermany
  4. 4.Plant Ecology Division-CORBIDILimaPeru
  5. 5.Delft University of TechnologyDelftThe Netherlands
  6. 6.Department of Catchment HydrologyHelmholtz Centre for Environmental Research GmbH – UFZLeipzigGermany
  7. 7.NCARBoulderUSA
  8. 8.Department of Environmental SciencesCentre for Research on Watershed-Aquatic Ecosystem Interactions (RIVE), University of Quebec at Trois-RiviéresTrois-RivièresCanada
  9. 9.School of Renewable Natural ResourcesLouisiana State UniversityBaton RougeUSA
  10. 10.University of Agriculture in KrakowKrakowPoland
  11. 11.Department of BiologyInstitute of Plant Science and Microbiology, University of HamburgHamburgGermany
  12. 12.University of NevadaRenoUSA
  13. 13.Northeastern UniversityBostonUSA
  14. 14.Applied Coastal Research LaboratoryGeorgia Southern UniversitySavannahUSA

Personalised recommendations