Skip to main content

MEE-DBD Plasma Actuator Effect on Aerodynamics of a NACA0015 Aerofoil: Separation and 3D Wake

  • Chapter
  • First Online:
Advances in Effective Flow Separation Control for Aircraft Drag Reduction

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 52))

Abstract

Dielectric barrier discharge (DBD) plasma actuators have received considerable attention by many researchers for various flow control applications. Having no moving parts, being light-weight, easily manufacturable, and their ability to respond almost instantly are amongst the advantages which has made them a popular flow control device especially for application on aircraft wings. The new configuration of DBDs which uses multiple encapsulated electrodes (MEE) has been shown to produce a superior and more desirable performance over the standard actuator design. The objective of the current study is to examine the effect of this new actuator configuration on the aerodynamic performance of an aerofoil under leading edge separation and wake interaction conditions. The plasma actuator is placed at the leading edge of a symmetric NACA 0015 aerofoil which corresponds to the location of the leading edge slat. The aerofoil is operated in a chord Reynolds number of \(0.2\,\times \,10^6\). Surface pressure measurements along with the mean velocity profile of the wake using pitot measurements are used to determine the lift and drag coefficients, respectively. Particle image velocimetry (PIV) is also utilised to visualise and quantify the induced flow field. The results show improvement in aerodynamic performances of aerofoil under leading edge separation and also facing the wake region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velkoff H, Ketcham J (1968) Effect of an electrostatic field on boundary layer transition. AIAA J 6(7):1381–1383

    Article  Google Scholar 

  2. Roth DM, Sherman JR and Wilkinson SP (1998) Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In: 36th Aerospace sciences meeting & exhibit, Reno

    Google Scholar 

  3. Opaits DF, Roupassov DV, Starikovskaia SM, Starikovskii AY, Zavialov IN, Saddoughi SG (2005) Plasma control of boundary layer using low-temperature non-equilibrium plasma of gas discharge. AIAA J 1180(43):10–13

    Google Scholar 

  4. Corke TC, Cavalieri DA, Matlis E (2002) Boundary-layer instability on sharp cone at Mach 3.5 with controlled input. AIAA J 40:1015–1018

    Article  Google Scholar 

  5. Grundmann S, Tropea C (2008) Delay of boundary-layer transition using plasma actuators. In: 46th AIAA aerospace sciences meeting and exhibit, paper number AIAA-2008-1369

    Google Scholar 

  6. He C, Corke TC, Patel MP (2009) Plasma flaps and slats: an application of weakly ionized plasma actuators. J Aircr 46(3):864–873

    Article  Google Scholar 

  7. Post ML, Corke TC (2004) Separation control on high angle of attack airfoil using plasma actuators. AIAA J 42(11):2177–2184

    Article  Google Scholar 

  8. Huang J, Corke TC, Thomas FO (2006) Plasma actuators for separation control of low-pressure turbine blades. AIAA J 44(1):51–57

    Article  Google Scholar 

  9. Ruisi R, Zare-Behtash H, Kontis K, Erfani R (2016) Active flow control over a backward-facing step using plasma actuation. Acta Astronaut 126:354–363

    Article  Google Scholar 

  10. Rethmel C, Little J, Takashima K, Sinha A, Adamovich I, Samimy M (2011) Flow separation control over an airfoil with nanosecond pulse driven dbd plasma actuators. In: 49th AIAA aerospace sciences meeting including the New Horizons forum and aerospace exposition, Orlando, Florida, paper number AIAA-2011-487

    Google Scholar 

  11. Erfani R, Zare-Behtash H, Kontis K (2012) Plasma actuator: influence of dielectric surface temperature. Exp Therm Fluid Sci 42:258–264

    Article  Google Scholar 

  12. Hale C, Erfani R, Kontis K (2010 ) Plasma actuators with multiple encapsulated electrodes to influence the induced velocity. In: 48th AIAA aerospace sciences meeting including the New Horizons forum and aerospace exposition, AIAA-2010-1223

    Google Scholar 

  13. Hale C, Erfani R, Kontis K (2010) Plasma actuators with multiple encapsulated electrodes to influence the induced velocity : further configurations. In: 40th Fluid dynamics conference and exhibit, AIAA-2010-5106, number 2010–5106

    Google Scholar 

  14. Erfani R, Hale C, Kontis K (2011) The influence of electrode configuration and dielectric temperature on plasma actuator performance. In: 49th AIAA aerospace sciences meeting including the New Horizons forum and aerospace exposition, Orlando, AIAA-2011-955

    Google Scholar 

  15. Erfani R, Erfani T, Utyuzhnikov SV, Kontis K (2013) Optimisation of multiple encapsulated electrode plasma actuator. Aerosp Sci Technol 26(1):120–127

    Article  Google Scholar 

  16. Erfani R, Erfani T, Hale C, Kontis K, Utyuzhnikov SV (2011) Optimization of induced velocity for plasma actuator with multiple encapsulated electrodes using response surface methodology. In: 49th AIAA aerospace sciences meeting including the New Horizons forum and aerospace exposition, Orlando, AIAA-2011-1206

    Google Scholar 

  17. Squire LC (1989) Interactions between wakes and boundary-layers. Prog Aerosp Sci 26(3):261–288

    Article  Google Scholar 

  18. Doligalski TL, Walker JDA (1984) The boundary layer induced by a convected two-dimensional vortex. J Fluid Mech 139(1):1–28

    Article  MATH  Google Scholar 

  19. Gartshore IS, Durbin PA, Hunt JCR (1983) The production of turbulent stress in a Shear flow by irrotational fluctuations. J Fluid Mech 137(1):307–329

    Article  Google Scholar 

  20. Takagi Y, Fujisawa N, Nakano T, Nashimoto A (2006) Cylinder wake influence on the tonal noise and aerodynamic characteristics of a NACA0018 airfoil. J Sound Vib 297(3–5):563–577

    Article  Google Scholar 

  21. Pfeil H, Herbst R, Schroder T (1982) Investigation of the laminar-turbulent transition of boundary layers disturbed by wakes. In: American society of mechanical engineers, 27th international gas turbine conference and exhibit, London, England

    Google Scholar 

  22. Liu X, Rodi W (2006) Experiments on transitional boundary layers with wake-induced unsteadiness. J Fluid Mech Digital Archive 231:229–256

    Article  Google Scholar 

  23. Kyriakides NK, Kastrinakis EG, Nychas SG, Goulas A (1999) Aspects of flow structure during a cylinder wake-induced laminar/turbulent transition. AIAA J 37(10):1197–1205

    Article  MATH  Google Scholar 

  24. Mailach R, Vogeler K (2002) Wake-induced boundary layer transition in a low-speed axial compressor. Flow Turbul Combust 69(3):271–294

    Article  MATH  Google Scholar 

  25. Bloy AW, West MG, Lea K (1993) Lateral aerodynamics interference between tanker and receiver in air-to-air refueling. J Aircr 30(5):705–710

    Article  Google Scholar 

  26. Iversen JD, Bernstein S (1974) Trailing vortex effects on following aircraft. J Aircr 11:60

    Article  Google Scholar 

  27. Kornilov VI, Pailhas G, Aupoix B (2002) Airfoil-boundary layer subjected to a two-dimensional asymmetrical turbulent wake. AIAA J 40(8):1549–1558

    Article  Google Scholar 

  28. Enloe CL, McLaughlin TE, VanDyken RD, Kachner KD, Jumper EJ, Corke TC, Post M, Haddad O (2004) Mechanisms and responses of a single dielectric barrier plasma actuator: geometric effects. AIAA J 42(3):595–604

    Article  Google Scholar 

  29. Erfani R, Zare-Behtash H, Kontis K (2012) Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance. J Phys D Appl Phys 45:225201

    Article  Google Scholar 

  30. Enloe CL, McLaughlin TE, VanDyken RD, Kachner KD, Jumper EJ, Corke TC (2004) Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J 42(3):589–594

    Article  Google Scholar 

  31. Fang Z, Lin J, Xie X, Qiu Y, Kuffel E (2009) Experimental study on the transition of the discharge modes in air dielectric barrier discharge. J Phys D Appl Phys 42:085203

    Article  Google Scholar 

  32. Enloe CL, McHarg MG, McLaughlin TE (2008) Time-correlated force production measurements of the dielectric barrier discharge plasma aerodynamic actuator. J Appl Phys 103:073302

    Article  Google Scholar 

  33. Erfani R, Zare-Behtash H, Hale C, Kontis K (2015) Development of dbd plasma actuators: the double encapsulated electrode. Acta Astronaut 109:132–143

    Article  Google Scholar 

  34. Zdravkovich MM (1997) Flow around circular cylinders: fundamentals. Oxford science publications, Oxford University Press, Oxford

    Google Scholar 

  35. Nakagawa T (1986) A formation mechanism of alternating vortices behind a circular cylinder at high reynolds number. J Wind Eng Ind Aerodyn 25(1):113–129

    Article  Google Scholar 

  36. Roshko A (1961) Experiments on the flow past a circular cylinder at very high reynolds number. J Fluid Mech 10(03):345–356

    Article  MATH  Google Scholar 

  37. Luk KF, So RMC, Kot SC, Lau YL, Leung RCK (2002) Airfoil vibration due to upstream alternating vortices generated by a circular cylinder. ASME Appl Mech Div Publ-AMD 253(A):79–88

    Google Scholar 

  38. Roth JR, Dai X (2006) Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device. In: 44th AIAA aerospace sciences meeting and exhibit, Reno, paper number AIAA 2006-1203 pp 9–12,

    Google Scholar 

  39. Erfani R, Hale C, Kontis K (2012) Flow control of a NACA 0015 airfoil in a turbulent wake using plasma actuators. In: 50th AIAA aerospace sciences meeting including the New Horizons forum and aerospace exposition, AIAA-2012-187

    Google Scholar 

  40. Abbott IH, Doenhoff AEV (1959) Theory of wing sections, including a summary of airfoil data. Dover books on physics and chemistry, Dover Publications

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Kontis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erfani, R., Kontis, K. (2020). MEE-DBD Plasma Actuator Effect on Aerodynamics of a NACA0015 Aerofoil: Separation and 3D Wake. In: Qin, N., Periaux, J., Bugeda, G. (eds) Advances in Effective Flow Separation Control for Aircraft Drag Reduction. Computational Methods in Applied Sciences, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-29688-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29688-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29687-2

  • Online ISBN: 978-3-030-29688-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics