Skip to main content

Modelling and Numerical Simulation for Flow Control

  • Chapter
  • First Online:
Advances in Effective Flow Separation Control for Aircraft Drag Reduction

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 52))

  • 712 Accesses

Abstract

This study deals with numerical prediction through Improved-Delayed-Detached-Eddy Simulation of the separating-reattaching flow over a backward-facing step and the manipulated flow with harmonic actuation for investigating the mechanism of reattaching acceleration. The predicted base flow agrees well with the experimental results in terms of both the time-averaged sense and the spectra content. Mode decomposition analyses, including Proper Orthogonal Decomposition and Dynamic Mode Decomposition are applied to the base flow data to extract the salient coherent structures, that is, shear layer mode and shedding mode. Then the base flow is excited with slot-shaped harmonic actuators with different excitation amplitudes and frequencies corresponding to those of the salient coherent structures. The flow data are analyzed with Triple Decomposition Technique to recognize the excited flow due to the actuation. We find that the reattachment is accelerated under the excitation of shear layer mode, while a significant promotion obtained under the excitation of vortex pairing. A better understanding of the separating-reattaching flow is presented and the mechanism of reattaching acceleration is finally proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eaton JK, Johnston JP (1981) A review of research on subsonic turbulent flow reattachment. AIAA J 19(9):1093–1100

    Article  Google Scholar 

  2. Brown GL, Roshko A (1974) On density effects and large structure in turbulent mixing layers. J Fluid Mech 64(04):775–816

    Article  Google Scholar 

  3. Bradshaw P, Wong F (1972) The reattachment and relaxation of a turbulent Shear layer. J Fluid Mech 52(01):113–135

    Article  Google Scholar 

  4. Hasan M (1992) The flow over a backward-facing step under controlled perturbation: laminar separation. J Fluid Mech 238:73–96

    Article  Google Scholar 

  5. McGuinness MD (1978) Flow with a separation bubble: steady and Unsteady Aspects. University of Cambridge

    Google Scholar 

  6. Kim J, Kline S, Johnston J (1978) Investigation of separation and reattachment of a turbulent shear layer: flow over a backward-facing step. Report MD-37, thermosciences division, department of mechanical engineering

    Google Scholar 

  7. Chandrsuda C (1975) A reattaching turbulent Shear layer in incompressible flow. Imperial Coll Sci Technol

    Google Scholar 

  8. Troutt T, Scheelke B, Norman T (1984) Organized structures in a reattaching separated flow field. J Fluid Mech 143:413–427

    Article  Google Scholar 

  9. Driver DM, Seegmiller HL, Marvin JG (1987) Time-dependent behavior of a reattaching shear layer. AIAA J 25(7):914–919

    Article  Google Scholar 

  10. Eaton JK, Johnston JP (1982) Low frequency unsteadyness of a reattaching turbulent Shear layer. In: Proceedings of turbulent Shear flows 3, Springer, pp 162–170

    Google Scholar 

  11. Roos FW, Kegelman JT (1986) Control of coherent structures in reattaching laminar and turbulent Shear layers. AIAA J 24(12):1956–1963

    Article  Google Scholar 

  12. Hudy LM, Naguib A, Humphreys WM (2007) Stochastic estimation of a separated-flow field using wall-pressure-array measurements. Phys Fluids (1994-present) 19(2):024103

    Article  Google Scholar 

  13. Bhattacherjee S, Scheelke B, Troutt T (1986) Modification of vortex interactions in a reattaching separated flow. AIAA J 24(4):623–629

    Article  Google Scholar 

  14. Chun KB, Sung H (1996) Control of turbulent separated flow over a backward-facing step by local forcing. Exp Fluids 21(6):417–426

    Article  Google Scholar 

  15. Yoshioka S, Obi S, Masuda S (2001) Turbulence statistics of periodically perturbed separated flow over backward-facing step. Int J Heat Fluid Flow 22(4):393–401

    Article  Google Scholar 

  16. Kapiris PG, Mathioulakis DS (2014) Experimental study of vortical structures in a periodically perturbed flow over a backward-facing step. Int J Heat and Fluid Flow 47:101–112

    Article  Google Scholar 

  17. Armaly BF, Durst F, Pereira J et al (1983) Experimental and theoretical investigation of backward-facing step flow. J Fluid Mech 127:473–496

    Article  Google Scholar 

  18. Neto AS, Grand D, Métais O et al (1993) A numerical investigation of the coherent vortices in turbulence behind a backward-facing step. J Fluid Mech 256:1–25

    Article  Google Scholar 

  19. Jovic S, Driver DM (1994) Backward-facing step measurements at low Reynolds number \(Re_h=5000\)

    Google Scholar 

  20. Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward-facing step. J Fluid Mech 330:349–374

    Article  Google Scholar 

  21. Kopera MA, Cantwell C, Kerr RM, et al (2014) Direct numerical simulation of turbulent flow over a backward-facing step. University of Warwick

    Google Scholar 

  22. Dietiker JF, Hoffmann KA (2009) Predicting wall pressure fluctuation over a backward-facing step using detached eddy simulation. J Aircr 46(6):2115–2120

    Article  Google Scholar 

  23. Dejoan A, Leschziner MA (2004) Large eddy simulation of periodically perturbed separated flow over a backward-facing step. Int J Heat Fluid Flow 25(4):581–92

    Article  Google Scholar 

  24. Spalart PR, Allmaras SR (1992) A one equation turbulence model for aerodinamic flows. AIAA J 94

    Google Scholar 

  25. Spalart P, Jou W, Strelets M et al (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Adv DNS/LES 1:4–8

    Google Scholar 

  26. Spalart PR, Deck S, Shur M et al (2006) A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor Comput Fluid Dyn 20(3):181–195

    Article  Google Scholar 

  27. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  28. Strelets M (2001) Detached eddy simulation of massively separated flows. In: Proceedings of AIAA, aerospace sciences meeting and exhibit, 39th, Reno, NV

    Google Scholar 

  29. Menter F, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. Turbul Heat Mass Trans 4(1):625–632

    Google Scholar 

  30. Shur ML, Spalart PR, Strelets MK et al (2008) A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow 29(6):1638–1649

    Article  Google Scholar 

  31. Neumann J, Wengle H (2003) DNS and LES of passively controlled turbulent backward-facing step flow. Flow Turbul Combust 71(1–4):297–310

    Article  Google Scholar 

  32. Neumann J, Wengle H (2004) Coherent structures in controlled separated flow over sharp-edged and rounded steps. J Turbul 5(22):14

    Google Scholar 

  33. Benard N, Pons-Prats J, Periaux J et al (2016) Turbulent separated Shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach. Exp Fluids 57(2):1–17

    Article  Google Scholar 

  34. Heenan AF, Morrison JF (1998) Passive control of backstep flow. Exp Thermal Fluid Sci 16(1):122–132

    Article  Google Scholar 

  35. Kang S, Choi H (2002) Suboptimal feedback control of turbulent flow over a backward-facing step. J Fluid Mech 463:201–227

    Article  Google Scholar 

  36. Lai JC, Yue J, Platzer MF (2002) Control of backward-facing step flow using a flapping foil. Exp Fluids 32(1):44–54

    Article  Google Scholar 

  37. Morioka T, Honami S (2004) Dynamic characteristics in a control system of backward facing step flow by vortex generator jets. AIAA paper 2125

    Google Scholar 

  38. Uruba V, Jonáš P, Mazur O (2007) Control of a channel-flow behind a backward-facing step by suction/blowing. Int J Heat Fluid Flow 28(4):665–72

    Article  Google Scholar 

  39. Henning L, King R (2007) Robust multivariable closed-loop control of a turbulent backward-facing step flow. J Aircr 44(1):201–8

    Article  Google Scholar 

  40. Dandois J, Garnier E, Sagaut P (2007) Numerical simulation of active separation control by a synthetic jet. J Fluid Mech 574:25–58

    Article  Google Scholar 

  41. Avdis A, Lardeau S, Leschziner M (2009) Large eddy simulation of separated flow over a two-dimensional hump with and without control by means of a synthetic slot-jet. Flow Turbul Combust 83(3):343–70

    Article  Google Scholar 

  42. Leschziner MA, Lardeau S (2011) Simulation of slot and round synthetic jets in the context of boundary-layer separation control. Philos Trans R Soc Lond A Math Phys Eng Sci 369(1940):1495–1512

    Article  Google Scholar 

  43. De Brederode V, Bradshaw P (1972) Three-dimensional flow in nominally two-dimensional separation bubbles: flow behind a rearward facing step. Dept Aeronaut Imperial Coll Sci Technol

    Google Scholar 

  44. Shur M, Strelets M, Zaikov L, et al (1995) Comparative numerical testing of one-and two-equation turbulence models for flows with separation and reattachement AIAA paper

    Google Scholar 

  45. Rhie C, Chow W (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21(11):1525–1532

    Article  Google Scholar 

  46. Lumley JL (1967) The structure of inhomogeneous turbulent flows. Atmos Turbul Radio Wave Propag 166–178

    Google Scholar 

  47. Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q Appl Math 45(3):561–571

    Article  Google Scholar 

  48. Meyer KE, Pedersen JM, Özcan O (2007) A turbulent jet in crossflow analysed with proper orthogonal decomposition. J Fluid Mech 583:199–227

    Article  MathSciNet  Google Scholar 

  49. Schmid P, Sesterhenn J (2008) Dynamic mode decomposition of numerical and experimental data. In: Proceedings of 61st annual meeting of the APS division of fluid dynamics

    Google Scholar 

  50. Rowley CW, Mezić I, Bagheri S et al (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127

    Article  MathSciNet  Google Scholar 

  51. Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Article  MathSciNet  Google Scholar 

  52. Hussain AKMF, Reynolds WC (1970) The mechanics of an organized wave in turbulent Shear flow. J Fluid Mech 41(2):241–258

    Article  Google Scholar 

  53. Holman R, Utturkar Y, Mittal R et al (2005) Formation criterion for synthetic jets. AIAA J 43(10):2110–2116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, R., Wang, L., Fu, S. (2020). Modelling and Numerical Simulation for Flow Control. In: Qin, N., Periaux, J., Bugeda, G. (eds) Advances in Effective Flow Separation Control for Aircraft Drag Reduction. Computational Methods in Applied Sciences, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-29688-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29688-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29687-2

  • Online ISBN: 978-3-030-29688-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics