Skip to main content

Active Flow Control Strategies and Tools for Turbulent Flows

  • Chapter
  • First Online:
Advances in Effective Flow Separation Control for Aircraft Drag Reduction

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 52))

  • 805 Accesses

Abstract

In this chapter we present considerations on the impact of the turbulence characteristics of most flows of industrial interest on the flow control interpretations or strategies. In the second part we will give an overview of the CFD approaches, including actuator integration methods. The actuators characteristics will then be presented with the associated detection methods. Considerations on the spatial and time characteristics of flow control will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schubauer GB, Skamstad HK (1947) Laminar boundary layer oscillation and stability of laminar flow. J Aeronaut Sci 14

    Google Scholar 

  2. Poisson-Quinton P, Lepage L (1961) Survey of French research on the control of boundary layers and circulation. In: Lachman GV (ed) Boundary layer and flow control

    Google Scholar 

  3. Gad-el-Hak M, Bushnell DM (1991) Separation control: a review. J Fluids Eng 113(1)

    Google Scholar 

  4. Gad-el-Hak M, Pollard A, Bonnet JP (1998) Flow control: fundamentals and practices. Springer, Berlin

    Google Scholar 

  5. King R (ed) (2007) Active flow control, notes on numerical fluid mechanics and interdisciplinarity design, vol 95. Springer, Berlin

    MATH  Google Scholar 

  6. Collis SS, Joslinb RD, Seifert A, Theofilis V (2004) Issues in active flow control: theory, control, simulation and experiment. Prog Aerosp Sci 40

    Google Scholar 

  7. Choi J, Choi H, Jeon WP (2002) AIAA J 40(5)

    Google Scholar 

  8. Choi K-S, De Bisschop J-R, Clayton BR (1998) Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J 36

    Google Scholar 

  9. Quadrio M, Ricco P, Viotti C (2009). Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J Fluid Mech

    Google Scholar 

  10. Wong CW, Zhou Y, Li Y, Li Y (2015) Active drag reduction in a turbulent boundary layer based on plasma-actuator generated streamwise vortices, Paper 9A-6, TSFP9. Melbourne, Australia

    Google Scholar 

  11. Zhou K, Doyle JC (1998) Essentials of robust control. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  12. Lee WY, Wong, M, Zohar Y (2002) Microchannels in series connected via a contraction/expasion. J Fluid Mech 459

    Google Scholar 

  13. Cordier L, Noack BR, Tissot G, Lehnasch G, Delville J, Balajewicz M, Daviller G, Niven RK (2013) Identification strategies for model-based control. Exp Fluids 54(8)

    Google Scholar 

  14. Benard N, Pons-Prats J, Periaux J, Bugeda G, Braud P, Bonnet JP, Moreau E (2016a) Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach. Exp Fluids 57:22

    Google Scholar 

  15. Benard N, Moreau E, Griffin J, Cattafesta L (2009) Plasma flow control—autonomous lift improvement by slope-seeking. AIAA paper 2009-4118

    Google Scholar 

  16. Liu SJ, Krstic M (2012) Stochastic averaging and stochastic seeking, communication and control engineering. Springer, Berlin

    MATH  Google Scholar 

  17. Duriez T, Brunton SL, Noack BR (2016) Machine learning control—taming non linear dynamics and turbulence. In: Series “fluid dynamics and its applications, 116. Springer, Berlin

    Google Scholar 

  18. Parezanović V, Cordier L, Spohn A, Duriez T, Noack BR, Bonnet JP, Segond M, Abel M, Brunton SL (2016), Frequency selection by feedback control in a turbulent shear flow. J. Fluid Mech 797

    Google Scholar 

  19. Rodi W (1975) A review of experimental data of uniform density free turbulent boundary layers. In: Launder BE (ed) Studies in convection, vol 1. Academic Press, NY, pp 79–165

    Google Scholar 

  20. Lumley J, Newman G (1977) The return to isotropy of homogeneous turbulence. J Fluid Mech 82–1:161–178

    MathSciNet  MATH  Google Scholar 

  21. Frohnapfel B, Lammers P, Jovanović J, Durst F (2007) Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants. J. Fluid Mech 577:457–466

    MATH  Google Scholar 

  22. Vassilicos JC (2015) Dissipation in turbulent flows. Annu Rev Fluid Mech 49(95):114

    Google Scholar 

  23. Lumley J (1992) Some comments on turbulence. Phys Fluids 4:206

    MATH  Google Scholar 

  24. Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  25. Lavoie P, Djenidi L, Antonia RA (2007) Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech 585

    MATH  Google Scholar 

  26. Valente PC, Vassilicos JC (2015) The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys Fluids 27

    Google Scholar 

  27. Michalke A (1965) Vortex formation in a free boundary layer according to stability theory. J Fluid Mech 22

    MathSciNet  Google Scholar 

  28. Ho CM, Huerre P (1984) Pertubed free shear layers. Annu Rev Fluid Mech 16

    Google Scholar 

  29. Reynolds WC, Hussain AKMF (1972) The mechanics of an organized wave in turbulent shear flow. J Fluid Mech 54

    Google Scholar 

  30. Frohnapfel B, Hasegawa Y, Quadrio M (2012) Money versus time: evaluation of flow control in terms of energy consumption and convenience. J. Fluid Mech 700

    MATH  Google Scholar 

  31. Seifert A (2015) Evaluation criteria and performance comparison of actuators, instability and control of massively separated flows. In: Theofilis V, Soria J (eds) Fluid mechanics and its applications, vol 107. Springer, Berlin

    Google Scholar 

  32. Wiltse J, Glezer A (1993) Manipulation of free shear flows using piezoelectric actuators. J Fluid Mech 249:261–285

    Google Scholar 

  33. Luchtenburg DM, Güther B, Noack BR, King R, Tadmor G (2009) A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration. J Fluid Mech 623

    MathSciNet  MATH  Google Scholar 

  34. Glezer A, Amitai M, Onohan AM (2005) Aspects of low and high frequency actuation for aerodynamic flow control. AIAA J 43

    Google Scholar 

  35. Barros D, Ruiz T, Borée J, Noack B, (2014) Control of a three-dimensional blunt body wake using low and high frequency pulsed jets. Int J Flow Control 6(1)

    Google Scholar 

  36. Oxalde AR, Morrison JF, Qubain A, Rigas G (2015) High-frequency forcing of a turbulent axisymmetric wake. J Fluid Mech 770:305–318

    Google Scholar 

  37. Benton S, Visbal MR (2016) Investigation of high-frequency separation control mechanism for delay of unsteady separation. In: 8th AIAA Flow Control Conference paper 2016-4241

    Google Scholar 

  38. Dandois J, Garnier E, Sagaut P (2007) Numerical simulation of active separation control by a synthetic jet. J Fluid Mech 574:25–58

    MATH  Google Scholar 

  39. Stanek MJ, Visbal MR, Rietta DP, Rubin SG, Khosla PK (2007) On a mechanism of stabilizing turbulent free shear layers in cavity flows. Comput Fluids 36(10)

    MathSciNet  MATH  Google Scholar 

  40. Vukasinovic B, Glezer A, Rusak Z (2007) Experimental and numerical investigation of controlled, small-scale motions in a turbulent shear layer. In: 3rd international symposium on integrating CFD and experiments in aerodynamics U.S. Air Force Academy, CO, USA

    Google Scholar 

  41. Parezanovic V, Laurentie J-C, Fourment C, Delville J, Bonnet J-P, Spohn A, Duriez T, Cordier L, Noack BR, Abel M, Segond M, Shaqarin T, Brunton SL (2014) Mixing layer manipulation experiment from open-loop forcing to closed-loop machine learning control. Flow Turbul Combust 94(1):155–173

    Google Scholar 

  42. Mons V, Chassaing JC, Gomez T, Sagaut P (2014) Is isotropic turbulence decay governed by asymptotic behavior of large scales? An eddy-damped quasi-normal Markovian–based data assimilation study. Phys Fluids 26:115105

    Google Scholar 

  43. Bos W, Shao L, Bertoglio JP (2007) Spectral imbalance and the normalized dissipation rate of turbulence? Phys Fluids 19

    MATH  Google Scholar 

  44. Vassilicos JC (2016) Unsteady turbulence cascades. Phys Rev E. https://doi.org/10.1103/physreve.00.003100

  45. Spalart PR, Jou W-H, Michael S, Allmaras SR (1997) Comments on the feasibility of LES for wings and on a Hybrid RANS/LES approach. In: Advances in DNS/LES, 1st AFOSR International Conference on DNS/LES

    Google Scholar 

  46. Breuer M, Jovivi N, Mazaev K (2003) Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence. Int J Numer Methods Fluids 43:357–388

    Google Scholar 

  47. Spalart RP (2009) Detached-eddy simulation. Annu Rev Fluid Mech 41:181181evixii, 16, 22, 24, 171

    MATH  Google Scholar 

  48. Shur M, Spalart PR, Strelets M, Travin A (1999) Detached-eddy simulation of an airfoil at high-angle of attack

    Google Scholar 

  49. Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows. AIAA paper 92-0439

    Google Scholar 

  50. Panguluri S, Reasor D, LeBeau RP Jr (2007) Investigation of grey area construction on the performance of detached eddy simulation. AIAA paper 2007–4095

    Google Scholar 

  51. Spalart PR et al (2006) A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoret Comput Fluid Dyn 20:181–195

    MATH  Google Scholar 

  52. Shur M, Spalart PR, Strelets M, Travin A (2008) A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow 29:1638ional

    Google Scholar 

  53. Deng S, Jiang L, Liu C (2007) DNS for flow separation control around an airfoil by pulsed jets. Comput Fluids 36(6):1040uidsje

    MATH  Google Scholar 

  54. Jewkes JW, Chung YM (2010) Low velocity-ratio pitched and skewed jet in a turbulent boundary layer. In: Mallinson GD, Cater JE (eds) 17th Australasian fluid mechanics conference, Auckland, New Zealand

    Google Scholar 

  55. Sau R, Mahesh K (2010) Optimization of pulsed jets in crossflow. J Fluid Mechanics 653(365):46

    MATH  Google Scholar 

  56. Laval JP et al (2010) Large-eddy simulations of control of a separated flow over a 2D bump by means of pulsed jets. J Turbul 11:N52

    Google Scholar 

  57. Bobonea A (2012) Impact of pulsed blowing jet on aerodynamic characteristics of wind turbine airfoils. In: AIP conference proceedings, vol 1493, p 170

    Google Scholar 

  58. Kral LD et al (1997) Numerical simulation of synthetic jet actuators. AIAA Paper 97-1824

    Google Scholar 

  59. Mittal R, Rampunggoon P, Udaykumar HS (2001) Interaction of a synthetic jet with a flat plate boundary layer. AIAA paper 2001-2773

    Google Scholar 

  60. Lee CY, Goldstein DB (2002) Two-dimensional synthetic jet simulation. AIAA J 40(3):510al sy

    Google Scholar 

  61. Ravi BR, Mittal R, Najjar FM (2004) Study of three-dimensional synthetic jet flowfields using direct numerical simulation. AIAA paper 51

    Google Scholar 

  62. You D, Moin P (2006) Large-eddy simulation of flow separation over an airfoil with synthetic jet control. In: Center for turbulence research annual research briefs, 337surbu

    Google Scholar 

  63. You D, Moin P (2007) Study of flow separation over an airfoil with synthetic jet control using large-eddy simulation. In: Annual research briefs, center for turbulence research, Stanford University, 311lence

    Google Scholar 

  64. Qin N, Xia H (2008) Detached eddy simulation of a synthetic jet for flow control. Proc Inst Mech Eng Part I: J Syst Control Eng 222(5):373–380

    Google Scholar 

  65. Hong G (2012) Numerical investigation to forcing frequency and amplitude of synthetic jet actuators. AIAA J 50(4):788estig

    Google Scholar 

  66. Sawant SG et al (2012) Modeling of electrodynamic zero-net mass-flux actuators. AIAA J 50(6):1347amic Z

    Google Scholar 

  67. Seifert A, Darabi A, Wygnanski I (1996) Delay of airfoil stall by periodic excitation. J Aircraft 33(4)

    Google Scholar 

  68. Seifert A (2009) Closed-loop active flow control systems: actuators. In: King R (ed) Notes on numerical fluid dynamics and multidisciplinary design, active flow control, vol 95. Springer, Berlin

    Google Scholar 

  69. Cattafesta LN III, Sheplak N (2011) Actuators for active flow control. Annu Rev Fluid Mech 43:247–272

    MATH  Google Scholar 

  70. Wehrmann O (1965) Tollmien—Schlichting waves under the influence of a flexible wall. Phys Fluids 1389–1390

    Google Scholar 

  71. Breuer KS, Haritonidis JH, Landahl MT (1989) The control of transient disturbances in a flat plate boundary layer through active wall motion. Phys Fluids A 1:574

    Google Scholar 

  72. Wilkinson SP, Malik MR (1985) Stability experiments in a flow over a rotating disk. AIAA J 23

    Google Scholar 

  73. Sinha NK, Ananthkrishnan N (2000) Level flight trim and stability analysis using continuation methods. In AIAA atmospheric flight mechanics conference, Paper 2000-4112, Denver, CO, USA

    Google Scholar 

  74. Bird J, Santer M, Morrison J (2015) Turbulent boundary layer control through spanwise wall oscillation using Kagome lattice structures. In: 68th Annual Meeting of the APS Division of Fluid Dynamics, vol 60, no 21

    Google Scholar 

  75. Kikuchi S, Fukunishi Y (1999) Active flow control technique using piezo-film actuators applied to the sound generation by a cavity. ASME FEDSM99-7232

    Google Scholar 

  76. Amir M, Kontis K (2008b) Application of piezoelectric actuators at subsonic speeds. J Aircr 45, 1419–1430. https://doi.org/10.2514/1.35630

    Google Scholar 

  77. Glezer A, Amitai MA (2002) Synthetic jets. Annu Rev Fluid Mech 34:503–529. https://doi.org/10.1146/annurev.fluid.34.090501.094913

    Article  MathSciNet  MATH  Google Scholar 

  78. Watson M, Jaworski AJ, Wood NJ (2003) Contribution to the understanding of flow interactions between multiple synthetic jets. AIAA J 41(4):747–749

    Google Scholar 

  79. Caruana D, Rogier F, Dufour G, Gleyzes C (2013) The plasma synthetic jet actuator, physics, modelling and flow control. Application to separation. ONERA J Aerosp Lab 6

    Google Scholar 

  80. Emerick T, Ali MY, Foster C, Alvi FS, Popkin S (2014) Spark jet characterizations in quiescent and supersonic flow fields. Exp Fluids 55

    Google Scholar 

  81. Grossman KR, Ossman KR, Cybyk BZ, Wie BZ (2003) Spark jet actuators for flow control. AIAA paper 2003-0057

    Google Scholar 

  82. Crittenden TM, Woo GTK, Glezer A (2012) Combustion powered actuators for separation control. AIAA paper 2012-3135

    Google Scholar 

  83. Moreau E (2007) Airflow control by non-thermal plasma actuators. J Phys D: Appl Phys 40(3)

    Google Scholar 

  84. Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mech 42(2010):505–529

    Google Scholar 

  85. Benard N, Moreau E (2014) Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids 55:1846

    Google Scholar 

  86. Maden I, Maduta R, Kriegseis J, Jakirlić S, Schwarz C, Grundmann S, Tropea C (2013) Experimental and computational study of the flow induced by a plasma actuator. Int J Heat Fluid Flows 41:80–89

    Google Scholar 

  87. Post ML, Corke TC (2003) Separation control on high angle of attack airfoil using plasma actuators. AIAA paper 2003-1024

    Google Scholar 

  88. Goeksel B, Greenblatt I, Nayeri C, Paschereit C (2006) Steady and unsteady plasma wall jets for separation and circulation control. AIAA paper 2006-3686

    Google Scholar 

  89. Corke T, Post M, Orlov D (2009) Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp Fluids 46:1–26

    Google Scholar 

  90. Little L, Nishihara M, Adamovich I, Samimy M (1999) High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator. Exp Fluids. https://doi.org/10.1007/s00348-009-0755-x

    Google Scholar 

  91. Jukes TN, Choi K-S, Johnson GA, Scott SJ (2006) Characterisation of surface plasma induced wall flows through velocity and temperature measurement. AIAA J 44(4):764–771

    Google Scholar 

  92. Gregory JW, Ruotolo JC, Byerley AR, McLaughlin TE (2007) Switching behavior of a plasma-fluidic actuator. In: 45th AIAA aerospace sciences meeting (AIAA 2007-0785)

    Google Scholar 

  93. Bohlito M, Jacob J (2009) Active vortex generators using jet vectoring plasma actuators. SAE Int J Aerosp 1(1):610–618

    Google Scholar 

  94. Benard N, Bonnet JP, Touchard G, Moreau E (2008) Flow control by dielectric barrier discharge actuators: jet mixing enhancement. AIAA J 46(9)

    Google Scholar 

  95. Benard N, Sujar-Garrido P, Bonnet JP, Moreau E (2016b) Control of the coherent structure dynamics downstream of a backward facing step by DBD plasma actuator. Int J Heat Fluid Flow 61(Part A):158–173

    Google Scholar 

  96. Samimy M, Adamovich I, Webb B, Kastner J, Hileman J, Keshav S, Palm P (2004) Development and characterization of plasma actuators for high-speed jet control. Exp Fluids 37:577–588

    Google Scholar 

  97. Utkin YG, Keshav S, Kim JH, Kastner J, Adamovich IV, Samimy M (2007) Development and use of localized arc filament plasma actuators for high-speed flow control. J Phys D: Appl Phys 40(3)

    Google Scholar 

  98. Bonnet JP, Acher G, Benard N, Lebedev A, Moreau E (2016) Sonic flow control by plasma: a new pulsed jet actuator. ICTAM Montreal, Canada

    Google Scholar 

  99. Roupassov DV, Nikipelov AA, Nudnova MM, Starikovskii AY (2009) Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge. AIAA J 47(1):168–185

    Google Scholar 

  100. Unfer T, Boeuf JP (2009) Modelling of a nanosecond surface discharge actuator. J Phys D Appl Phys 42(19)

    Google Scholar 

  101. Starikovskiy A, Pancheshnyi S (2013) Dielectric barrier discharge development at low and moderate pressure conditions. AIAA Paper 2013-0902

    Google Scholar 

  102. Correale G, Kontis M (2015) Control of backward facing step flow using NS-DBD plasma actuators. 9C-4 paper, TSFP9, Melbourne, Australia

    Google Scholar 

  103. Woszidlo R, Nawroth H, Raghu S, Wygnanski IJ (2010) Parametric study of sweeping jet actuators for separation control. In: AIAA 5th Flow Control Conference paper 2010-4247

    Google Scholar 

  104. Schatzman D, Wilson J, Arad E, Seifert A, Shtendel T (2014) Drag reduction mechanisms of suction-an-oscillatory-blowing flow control. AIAA J 52(11)

    Google Scholar 

  105. Schatzman D, Wilson J, Marom L, Palei V, Seifert A, Arad E (2015) Suction and oscillatory blowing interaction with boundary layers. AIAA Paper

    Google Scholar 

  106. Upadhyay P, Gustavsson JPR, Alvi FS (2016) Development and characterization of high-frequency resonance-enhanced microjet actuators for control of high-speed jets. Exp Fluids 2016:57

    Google Scholar 

  107. Andino MY, Lin JC, Washburn E, Whalen EA, Graff EC, Wygnanski IJ (2015) Flow separation control on a full scale vertical tail model using sweeping jet actuators. AIAA Sci Tech paper 2015-0785

    Google Scholar 

  108. Jacquin L (2009) Scales in turbulent motions. ONERA J Aerosp Lab 1

    Google Scholar 

  109. Arakeri V, Krothapalli A, Siddavaram V, Alkislar MB, Lourenco LM (2003) On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech 490:75

    MATH  Google Scholar 

  110. Castelain T, Sunyach M, Juvé D, Béra J-C (2008) Jet-noise reduction by impinging microjets: an acoustic investigation testing microjet parameters. AIAA J 46(5)

    Google Scholar 

  111. Laurendeau E, Jordan P, Bonnet JP, Delville J, Parnaudeau P, Lamballais E (2008) Subsonic jet noise reduction by fluidic control: the interaction region and the global effect. Phys Fluids 20(1)

    MATH  Google Scholar 

  112. Johari H, Rixon GS (2003) Effects of pulsing on a vortex generator jet. AIAA J 41

    Google Scholar 

  113. Stanlov O, Seifert A (2008) On amplitude scaling for active separation control. In: International conference on jets, wakes and separated flows TU Berlin

    Google Scholar 

  114. Seifert A (2015) Evaluation criteria and performance comparison of actuators. Fluid Mech Its Appl 107:59–64. https://doi.org/10.1007/978-3-319-06260-0_8

    Google Scholar 

  115. Wong WS, Qin N, Sellars N, Holden H, Babinsky H (2008) A combined experimental and numerical study of flow structures over 3D shock control bumps. Aerosp Sci Technol 12:436–447

    Google Scholar 

  116. Amir M, Kontis K (2008a) Oscillation effects on boundary-layer development under the influence of favourable pressure gradients. J Aircr 45(6):1955–1968

    Google Scholar 

  117. Goldstein RJ (1996) Fluid Mechanics measuremensts. Taylor and Francis, Washington, DC

    Google Scholar 

  118. Reda DC, Muratore JJ Jr (1994) A new technique for the measurement of surface shear stress vectors using liquid crystal coatings. AIAA paper 94-0729

    Google Scholar 

  119. Hall JW, Tinney C, Ausseur JM, Pinier JT, Hall AM, Glauser MN (2008) IUTAM symposium on flow control and MEMS. In: Morrison JF, Birch DM, Lavoie P (eds) Springer, Berlin

    Google Scholar 

  120. Sheplak M, Cattafesta L, Nishida T, Mcginlevet C (2004) MEMS Shear Stress Sensors: Promise and Progress. In: 24th AIAA Aerodynamic measurement technology and ground testing conference (AIAA 2004-2606, Portland)

    Google Scholar 

  121. Baars WJ, Squire DT, Talluru KM, Abbassi MR, Hutchins N, Marusic I (2016) Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element. Exp Fluids 57(90):1–16

    Google Scholar 

  122. Hochareon MB, Fontaine A (2004) Wall shear-rate estimation within the 50cc Penn State artificial heart using PIV, J. of Biomech. Eng. 126:430–437

    Google Scholar 

  123. Tarasov VN, Orlov AA (1990) Tarasov V N and Orlov A A 1990 Method for determining shear stress on aerodynamic model surface. Pat Russ 4841553/23/1990

    Google Scholar 

  124. Siaw WL, Bonnet JP (2017) Transient phenomena in separation control over a NACA 0015 airfoil. Int J Heat Fluid Flow http://www.sciencedirect.com/science/journal/0142727X

  125. Lui T, Sullivan JP (2005) Pressure and temperature sensitive paints, experimental fluid mechanics. Springer, Berlin

    Google Scholar 

  126. Bolitho M, Jacob JD (2008) Thrust vectoring flow control using plasma synthetic jet actuators. AIAA paper 2008-1429

    Google Scholar 

  127. Debien A, Aubrun S, Mazelier N, Kourta A (2015) Active separation control process over a sharp edge ramp, 3D-1 paper, TSFP9. Melbourne, Australia

    Google Scholar 

  128. Ming X, Dai CH (1991) A new phenomenon of acoustic streaming. Acta Mech Sinica. Proceedings of the international conference on fluid dynamics measurement and its applications Oct 1989. vol. 7(3). Beijing China

    Google Scholar 

  129. Ming X (1992) New phenomenon of rectifying effect, Chinese. J Theor Appl Mech 24(1):52–60

    Google Scholar 

Download references

Acknowledgements

JPB thanks fruitful discussions with B. N. Noack and V. Parezanović and C. Vassilicos, with a particular thank to J. Delville, in memoriam. Nicoals Bénard is also acknowledged for the DBD section. NQ would like to thank X Ming, K. Kontis, N Wood for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Bonnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonnet, JP., Qin, N. (2020). Active Flow Control Strategies and Tools for Turbulent Flows. In: Qin, N., Periaux, J., Bugeda, G. (eds) Advances in Effective Flow Separation Control for Aircraft Drag Reduction. Computational Methods in Applied Sciences, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-29688-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29688-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29687-2

  • Online ISBN: 978-3-030-29688-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics