Skip to main content

Environmental Controls and Facies Architecture of a Jurassic Carbonate Episode (La Manga Formation), Mendoza Province, Neuquén Basin

  • 256 Accesses

Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

La Manga Formation is a vast carbonate system developed in the Neuquén Basin. The age is based in ammonite faunas, ranging from Early Callovian (Bodenbenderi-Proximum Zone) to Middle Oxfordian (Cordatum Standard Zone to Transversarium Standard Zone, and probably to the lower part of the Bifurcatus Standard Zone). A stratigraphical and sedimentological analysis, in the outcrops exposed in the south of Mendoza province, enabled the recognition of five facies associations of a carbonate ramp corresponding to (1) distal outer ramp, (2) proximal outer to distal middle ramp, (3) proximal middle ramp, (4) inner ramp deposits (shoreface, shoal, patch reef, shallow subtidal lagoon and tidal flat) and (5) paleokarstic facies. These facies correspond to homoclinal to distally steepened carbonate ramp. The facies associations are included into three third-order depositional sequences (DS-1, DS-2, DS-3) represented by transgressive and highstand systems tracts with sequence boundaries of regional character. Different controlling factors can be recognised in the deposition of this unit. The abrupt changes of facies, as well as paleokarst and epikarst discontinuity surfaces in the successions provide important evidence in terms of depositional environment and vertical evolution of the carbonate ramp. Facies patterns are variable across the outcrop area and vertically through time because of a combination of ramp morphology, siliciclastic supply, sea level changes and tectonic effects. In the southern sections, siliciclastic influx influenced the deposition of proximal middle ramp facies later overlain by scleractinian patch reefs which grew up throughout progressive stages from aggradational to progradational facies in response to climate controls and nutrient levels influence. In northern outcrops, tectonic controls affected the ramp topography and influenced the development of distal deep marine facies. Shallow subtidal and peritidal cycles indicate a combination of allocyclic and autocyclic processes controlling accommodation space and sediment accumulation.

Keywords

  • Callovian–Oxfordian
  • Carbonate ramp
  • Sea level changes
  • Tectonic controls

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-29680-3_4
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-29680-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

(modified from Palma et al. 2009)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adams RD, Grotzinger JP (1996) Lateral continuity of facies and parasequences in Middle Cambrian platform carbonates, Carrara Formation, southeastern California, USA. J Sediment Petrol 66:1079–1090

    Google Scholar 

  • Aigner T (1982) Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk limestones (Middle Trias, SW Germany). In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin, pp 180–198

    CrossRef  Google Scholar 

  • Assereto RL, Kendall CG (1977) Nature, origin and classification of peritidal tepee structures and related breccias. Sedimentology 24:153–210

    CrossRef  Google Scholar 

  • Bádenas B, Aurell M, Bosence D (2010) Continuity and facies heterogeneities of shallow carbonate ramp cycles (Sinemurian). Lower Jurassic, North-east Spain. Sedimentology 57:1021–1048

    CrossRef  Google Scholar 

  • Bathurst RGC (1976) Carbonate sediments and their diagenesis developments in sedimentology, 12th edn. Elsevier, New York, p 658

    Google Scholar 

  • Baumgärtner M, Reyle M (1995) Oberjurassische Rampenentwicklung in der Region von Jabaloyas und Cerezo (Keltiberikum; Spanien). Profil 8:339–361

    Google Scholar 

  • Beresi MS (2003) Oxfordian sponge association from the Neuquén basin, Mendoza, west central Argentina. J S Am Earth Sci 16:105–112

    CrossRef  Google Scholar 

  • Beresi MS (2007) Fossil sponges of Argentina: a review. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G. (eds) Porifera research: biodiversity, innovation and sustainability, Museu Nacional du Rio de Janeiro, Rio de Janeiro, série livros vol 28, pp 11–21

    Google Scholar 

  • Beresi MS, Cabaleri NG, Löser H et al (2017) Coral patch reef system and associated facies from southwestern Gondwana: paleoenvironmental evolution of the Oxfordian shallow-marine carbonate platform at Portada Covunco, Neuquén Basin, Argentina. Facies 63:22

    CrossRef  Google Scholar 

  • Bressan GS, Palma RM (2010) Taphonomic analysis of fossil concentrations from La Manga Formation (Oxfordian), Neuquén Basin, Mendoza Province, Argentina. J Iber Geol 36:55–71

    Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sediment Geol 79:3–57

    CrossRef  Google Scholar 

  • Caswell BA, Coe AL, Cohen AS (2009) New range data for marine invertebrate species across the early Toarcian (early Jurassic) mass extinction. J Geol Soc London 166:859–872

    CrossRef  Google Scholar 

  • Chafetz HS (1986) Marine peloids: a product of bacterially induced precipitation of calcite. J Sediment Petrol 56:812–817

    Google Scholar 

  • Cook HE, Mullins HT (1983) Basin margin. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments, AAPG Memoir 33:539–618

    Google Scholar 

  • Duff KL (1978) Bivalvia from the English lower Oxford Clay (Middle Jurassic). Palaeontogr Soc Monogr 132:1–137

    Google Scholar 

  • Dumas S, Arnott RWC (2006) Origin and hummocky and swaley cross-stratification. The controlling influence of unidirectional current strength and aggradation rate. Geology 34:1073–1076

    CrossRef  Google Scholar 

  • Ekdale AA, Mason TR (1988) Characteristic trace-fossils associations in oxygen-poor sedimentary environments. Geology 16:720–723

    CrossRef  Google Scholar 

  • Etter RJ (1996) The effect of wave action, prey type, and foraging time on growth of the predatory snail Nucella lapillus (L). J Exp Mar Biol Ecol 196:341–356

    CrossRef  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, Berlin

    CrossRef  Google Scholar 

  • Gerth E (1925) La fauna neocomiana de la Cordillera Argentina en la parte meridional de la provincia de Mendoza. Academia Nacional de Ciencias, Cordoba, vol 9, pp 57–132

    Google Scholar 

  • Giambiagi L, Bechis F, Lanés S et al (2008) Formación y evolución Triásico-Jurásica del depocentro Atuel, Cuenca Neuquina, provincia de Mendoza. Rev Asoc Geol Argent 63:520–533

    Google Scholar 

  • Groeber P (1918) Estratigrafía del Dogger en la República Argentina. Estudio sintético comparativo. Dirección General de Minas, Geología e Hidrogeología, Buenos Aires, vol 18, Serie B, pp 1–81

    Google Scholar 

  • Groeber P (1933) Confluencia de los ríos Grande y Barrancas (Mendoza y Neuquén). Dirección Nacional de Geología y Minería, Buenos Aires, vol 38, pp 1–72

    Google Scholar 

  • Groeber P (1937) Descripción geológica de la Hoja 30c Puntilla de Huincán, provincia de Mendoza. Dirección Nacional de Geología y Minería, Buenos Aires

    Google Scholar 

  • Groeber P (1946) Observaciones geológicas a lo largo del meridiano 70. I. Hoja Chos Malal. Rev Asoc Geol Argent 1:177–208

    Google Scholar 

  • Groeber P, Stipanicic PN, Mingramm A (1953) Jurásico. In: Groeber P (ed) Mesozoico, Geografía de la República Argentina. Sociedad Argentina de Estudios Geográficos, Buenos Aires, GAEA 2, pp 143–347

    Google Scholar 

  • Hamon Y, Merzeraud G (2008) Facies architecture and cyclicity in a mosaic carbonate platform: effects of fault-block tectonics (Lower Lias, Causses platform, south-east France). Sedimentology 55:155–178

    Google Scholar 

  • Handford CR (1986) Facies and bedding sequences in shelf-storm-deposited carbonates—Fayetteville Shale and Pitkin Limestone (Mississippian), Arkansas. J Sediment Res 56:123–137

    CrossRef  Google Scholar 

  • Harms JC, Southard JB, Walker RG (1982) Structures and sequences in clastic rocks. Lecture Notes SEPM Short Course, Tulsa 9:249

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PV (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    CrossRef  Google Scholar 

  • Heller PL, Anderson DL, Angevine CL (1996) Is the middle Cretaceous pulse of rapid sea-floor spreading real or necessary? Geology 24:491–494

    CrossRef  Google Scholar 

  • Husinec A, Read JF (2007) The Late Jurassic Tithonian, a greenhouse phase in the Middle Jurassic-Early Cretaceous “cool” mode: evidence from the cyclic Adriatic platform, Croatia. Sedimentology 54:317–337

    CrossRef  Google Scholar 

  • Husinec A, Read JF (2011) Microbial laminite versus rooted and burrowed caps on peritidal cycles: salinity control on parasequence development, Early Cretaceous isolated carbonate platform, Croatia. Geol Soc Am Bull 123:1896–1907

    CrossRef  Google Scholar 

  • James NP (1983) Reefs. In: Scholle PA, Debont DG, Moore CH (eds) Carbonate Depositional Environments, AAPG Memoir vol 33, pp 345–440

    Google Scholar 

  • James NP, Choquette PW (1984) Diagenesis 9. Limestones—the meteoric diagenetic environment. Geosci Can 11:161–194

    Google Scholar 

  • Jaworski E (1925) Contribución a la paleontología del Jurásico sudamericano (Revisada por Pablo Groeber). Dir Gral Min Geol Hidrol, Buenos Aires, Sec Geol 4:1–160

    Google Scholar 

  • Kauffman EG, Sageman BB (1990) Biological sensing of benthic environments in dark shales and related oxygen-restricted facies. In: Ginsburg RN, Beaudoin B (eds) Cretaceous resources, events and rhythms. Kluwer Academic Publishers, Dordrecht, pp 121–139

    Google Scholar 

  • Kazmierczak J, Coleman ML, Gruszczynski M et al (1996) Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas. Acta Palaeont Pol 41:319–338

    Google Scholar 

  • Kershaw S (1994) Classification and geological significance of biostromes. Facies 31:81–92

    CrossRef  Google Scholar 

  • Keupp H, Koch R, Leinfelder RR (1990) Steuerungsprozesse der Entwicklung von Oberjura-Spongiolithen Sueddeutschlands: Kenntnisstand, Problem und Perspectiven. Facies 23:141–174

    CrossRef  Google Scholar 

  • Kidwell SM, Bosence DW (1991) Taphonomy and time-averaging of marine faunas. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology 9, pp 115–209

    Google Scholar 

  • Kidwell SM, Holland SM (1991) Field description of coarse bioclastic fabrics. Palaios 6:426–434

    CrossRef  Google Scholar 

  • Kidwell SM, Fürsich FT, Aigner T (1986) Conceptual framework for the analysis and classification of shell concentrations. Palaios 1:228–238

    CrossRef  Google Scholar 

  • Kietzmann DA, Palma RA, Ferreyra TMA (2016) Análisis de facies y asignación estratigráfica de los depósitos fluviales innominados del Jurásico Medio de la Cuenca Neuquina surmendocina. Rev Asoc Geol Argent 73:104–116

    Google Scholar 

  • Kreisa RR (1981) Storm-generated sedimentary structures in subtidal marine facies with examples from the middle and upper Ordovician of southwestern Virginia. J Sediment Petrol 51:832–848

    Google Scholar 

  • Kornicker LS, Wise CD, Wise JM (1963) Factors affecting the distribution of opposing mollusk valves. J Sediment Petrol 33:703–712

    Google Scholar 

  • Lazo DG, Palma RM, Piethé RD (2008) La traza Dactyloidites ottoi (Geinitz) en la Formación La Manga, Oxfordiano de Mendoza. Ameghiniana 45:627–632

    Google Scholar 

  • Leanza HA (1981) The Jurassic-Cretaceous boundary beds in west-central Argentina and their ammonite zones. Neues Jahrb Geol P-A 161:62–92

    Google Scholar 

  • Leanza HA (2009) Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Rev Mus Argent Cs Nat 11:145–184

    CrossRef  Google Scholar 

  • Legarreta L (1991) Evolution of a Callovian-Oxfordian carbonate margin in the Neuquén Basin, of west-central Argentina: facies, architecture, depositional sequences and global sea-level changes. Sediment Geol 70:209–240

    CrossRef  Google Scholar 

  • Legarreta L, Gulisano CA (1989) Análisis estratigráfico de la Cuenca Neuquina (Triásico Superior- Terciario Inferior). In: Chebli GA, Spalletti L (eds) Cuencas Sedimentarias Argentinas, Simposio Cuencas Sedimentarias Argentinas, Universidad de Tucumán, Serie Correlación Geológica, vol 6, pp 221–243

    Google Scholar 

  • Legarreta L, Uliana MA (1996) The Jurassic succession in west-central Argentina: stratal pattern, sequences and paleogeographic evolution. Palaeogeogr Palaeocl 120:303–330

    CrossRef  Google Scholar 

  • Leinfelder RR (1992) A modern-type Kimmeridgian reef (Ota Limestone); Portugal. Implications for Jurassic reef models. Facies 26:11–34

    CrossRef  Google Scholar 

  • Lo Forte G, Palma RM (2002) Facies, microfacies and diagenesis of Late Callovian-Early Oxfordian carbonates (La Manga Formation) in the west central Argentinian High Andes. Carbonate Evaporite 17:1–16

    CrossRef  Google Scholar 

  • Loucks RG (1999) Paleocave Carbonatic Reservoir: origins, burial-depth modifications, spatial complexity and reservoir implications. AAPG Bull 83:1795–1834

    Google Scholar 

  • MacEachern JA, Pemberton SG (1992) Ichnological aspects of Cretaceous shoreface successions and shoreface variability in the Western interior seaway of North America. In: Pemberton SG (ed) Aplications of ichnology to petroleum exploration, SEPM, Core Workshop 17, Tulsa, pp 57–84

    Google Scholar 

  • Mazzulo SJ, Mazzulo LJ (1992) Paleokarst and karst associated hydrocarbon reservoir in the Fusselman Formation, west Texas, Permian basin. In: Candelaria MP, Reed CL (eds) Paleokarst, karst related diagenesis and reservoir development: examples from Ordovician-Devonian age strata of West Texas and the mid-continent: Permian Basin Section. SEPM 92, Tulsa, pp 110–120

    Google Scholar 

  • Min MZ, Lug XZ, Mao SL et al (2001) An excellent fossil wood cell texture with primary uranium minerals at a sandstone-hosted roll-type uranium deposit, NW China. Ore Geol Rev 17:233–239

    CrossRef  Google Scholar 

  • Mitchum RM Jr, Uliana MA (1985) Seismic stratigraphy of carbonate depositional sequences, Upper Jurassic-Lower Cretaceous, Neuquén Basin, Argentina. AAPG Memoir 39:255–274

    Google Scholar 

  • Morsch SM (1990) Corales (Scleractinia) de la extremidad sur de la Sierra de la Vaca Muerta, Formación La Manga (Oxfordiano), provincia del Neuquén, Argentina. Ameghiniana 27:19–28

    Google Scholar 

  • Mulder T, Alexander J (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48:269–299

    CrossRef  Google Scholar 

  • Nagle JS (1967) Wave and current orientation of shells. J Sediment Petrol 37:1124–1138

    Google Scholar 

  • Nori L, Lathuilière B (2003) Form and environment of Gryphaea arcuata. Lethaia 36:83–96

    CrossRef  Google Scholar 

  • Oschmann W (1988) Kimmeridge Clay sedimentation—A new cyclicity model. Palaeogeogr Palaeocl 65:217–251

    CrossRef  Google Scholar 

  • Palma RM, Lo Forte GL, Medhli M et al (2005) High-frecuency cyclicity of the Callovian Calabozo Formation, Neuquén Basin, Argentina. Geol Acta 3:119–132

    Google Scholar 

  • Palma RM, López-Gómez J, Piethé RD (2007) Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Mendoza Province), Neuquén Basin, Argentina: facies and depositional sequences. Sediment Geol 195:113–134

    CrossRef  Google Scholar 

  • Palma RM, Kietzmann DA, Adamonis S et al (2009) Oxfordian reef architecture of the La Manga Formation, Neuquén Basin, Mendoza Province, Argentina. Sediment Geol 221:127–140

    CrossRef  Google Scholar 

  • Palma RM, Riccardi AC, Kietzmann DA et al (2011) Depósitos carbonáticos de la Formación La Manga (Caloviano inferior - Oxfordiano medio): evidencias de regresión forzada. Depocentro Atuel, Mendoza, Cuenca Neuquina. In: Abstracts of the 18 Congreso Geológico Argentino, 2–6 May 2018

    Google Scholar 

  • Palma RM, Kietzmann DA, Martín-Chivelet J et al (2012) New biostratigraphic data from the Callovian-Oxfordian La Manga Formation, Neuquén Basin, Argentina: Evidence from an ammonite condensed level. Rev Paléobiol 11:345–356

    Google Scholar 

  • Palma RM, Kietzmann DA, Bressan GS et al (2013) Peritidal cyclic sedimentation from La Manga Formation (Oxfordian), Neuquén Basin, Mendoza, Argentina. J S Am Earth Sci 47:1–11

    CrossRef  Google Scholar 

  • Palma RM, Bressan GS, Kietzmann DA et al (2014) Palaeoenvironmental significance of middle Oxfordian deep marine deposits from La Manga Formation, Neuquén Basin, Argentina. J Iber Geol 40:507–520

    CrossRef  Google Scholar 

  • Palma RM, Kietzmann DA, Comerio M et al (2015) Oxfordian microbial laminites from La Manga Formation, Neuquén Basin, Argentina: remarkable nanobacteria preservation. J Iber Geol 41:351–363

    Google Scholar 

  • Palma RM, Bressan GS, López-Gómez J et al (2017) Las facies paleokársticas de la Fm. La Manga (Oxfordiano Medio) en el sur de Mendoza. Rev Asoc Geol Argent 74:40–48

    Google Scholar 

  • Permberton SG, Frey RW (1984) Ichnology of storm-influenced shallow marine sequence: Cardium Formation (Upper Cretaceus) at Seebe, Alberta. In: Stott DF, Glass DJ (eds.) The Mesozoic of Middle North America. Canadian Society of Petroleum Geologists, vol 9, p 281–304

    Google Scholar 

  • Perri E, Tucker ME (2007) Bacterial fossils and microbial dolomite in Triassic stromatolites. Geology 35:207–210

    CrossRef  Google Scholar 

  • Plint AG, Norris B (1991) Anatomy of a ramp margin sequence: facies successions, paleogeography and sediment dispersal patterns in the Muskiki and Marshybank formations, Alberta Foreland Basin. B Can Petrol Geol 39:18–42

    Google Scholar 

  • Plint AG, Nummedal D (2000) The falling stage systems tract: Recognition and importance in sequence stratigraphic analysis. In: Hunt D, Gawthorpe RLG (eds) Sedimentary responses to forced regressions. The Geological Society, London, SP 172, pp 1–17

    CrossRef  Google Scholar 

  • Pratt BR (1995) The origin, biota and evolution of deep-water mud-mounds. In: Monty CLV, Bosence DW, Bridges PH, Pratt BR (eds) Carbonate mud-mounds: their origin and evolution. IAS, SP, pp 123–2349

    Google Scholar 

  • Reid RP, Foster JS, Radtke G et al (2011) Modern Marine Stromatolites of Little Darby Island, Exuma Archipelago, Bahamas: environmental setting, accretion mechanisms and role of Euendoliths. Advances in Stromatolite Geobiology. Lect Note Earth Sci 131:77–89

    CrossRef  Google Scholar 

  • Röhl H-J, Schmid-Röhl A, Oschmann W et al (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeocl 165:27–52

    CrossRef  Google Scholar 

  • Riccardi AC (1984) Las asociaciones de amonitas del Jurásico y Cretácico de Argentina. In: Abstracts of the 9 Congreso Geológico Argentino, San Carlos de Bariloche, 5–9 Nov 1984

    Google Scholar 

  • Riccardi AC (1992) Biostratigraphy of west-central Argentina. In: Westermann GEG (ed.) The Jurassic of the Circum-Pacific. Cambridge University Press, Cambridge, pp 139–141

    Google Scholar 

  • Riccardi AC (1996) Heterochronic changes in the Andean Neuquéniceratinae (Ammonoidea, Middle Jurassic). In: Abstractys of the 4 international symposium Cephalopods, Present and Past, 15–17 July 1996

    Google Scholar 

  • Riccardi AC (2008) The marine Jurassic of Argentina: a biostratigraphic framework. Episodes 31:326–335

    CrossRef  Google Scholar 

  • Sarg JF (1988) Carbonate sequence stratigraphy. In: Wilgus CK, Hastings BS, Kendall CGStC, Posamentier HW, Ross CA, Van Wagoner JC (eds.) Sea level changes-an integrated approach. SEPM SP 42, pp 155–351

    Google Scholar 

  • Savrda CE, Bottjer DJ, Seilacher A (1991) Redox-related benthic events. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 524–541

    Google Scholar 

  • Schieber J, Baird G (2001) On the origin and significance of pyrite spheres in Devonian black shales of North America. J Sediment Res 71:55–166

    CrossRef  Google Scholar 

  • Schmid DU, Jonischkeit A (1995) The Upper Jurassic Sao Romao limestone (Algarve, Portugal): an isolated carbonate ramp. Profil 8:319–337

    Google Scholar 

  • Shinn EA (1983) Tidal flats. In: Scholle PA, Bebout DG, Moore CH (eds.) Carbonate depositional environments. AAPG Memoir vol 33, pp 171–210

    Google Scholar 

  • Stipanicic PN (1951) Sobre la presencia del Oxfordense superior en el Arroyo de La Manga, Mendoza. Rev Asoc Geol Argentina 6:213–240

    Google Scholar 

  • Stipanicic PN (1965) El Jurásico de la Vega de la Veranada (Neuquén), el Oxfordense y el diastrofismo divesiano (Agassiz-Yaila) en Argentina. Rev Asoc Geol Argent 20:403–478

    Google Scholar 

  • Stipanicic PN, Westermann GEG, Riccardi AC (1975) The Indo-Pacific ammonite Mayaites in the Oxfordian of the Southern Andes. Ameghiniana 12:281–305

    Google Scholar 

  • Strasser A (1986) Ooids in Purbeck limestones (lowermost Cretaceous), of the Swiss and French Juras. Sedimentology 33:711–728

    CrossRef  Google Scholar 

  • Strasser A, Hillgärtner H, Pasquier JB (2004) Cyclostratigraphic timing of sedimentary processes: An example from the Berriasian of the Swiss and French Jura Mountains. In: D’Argenio B, Fischer AG, Premoli Silva I, Weissert I, Ferreri V (eds) Cyclostratigraphy: approaches and case histories. SEPM SP 81, pp 135–151

    Google Scholar 

  • Taylor KG, Macquaker JHS (2000) Spatial and temporal distribution of authigenic minerals in continental shelf sediments: implications for sequence stratigraphic analysis. In: Glenn CR, Prevot-Lucas L, Lucas J (eds) Marine authigenesis: MICROBIAL TO GLOBal. SEPM, SP 66, p 309–323

    Google Scholar 

  • Tribovillard N (1998) Bacterially mediated peloids in laminated, organic matter rich, limestones: an unobtrusive presence. Terra Nova 10:126–130

    CrossRef  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, p 482

    CrossRef  Google Scholar 

  • Van Wagoner JC, Posamentier HW, Mitchum RM et al (1988) An overview of the fundamentals of sequence stratigraphy and key definitions. In: Wilgus CK, Hastings BS, Kendall CGStC et al (eds.) Sea level changes—an integrated approach. SEPM, SP 42, pp 39–45

    Google Scholar 

  • Vergani GD, Tankard AJ, Belotti HJ et al (1995) Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In: Tankard AJ, Suárez Soruco R, Welsink HJ (eds) Petroleum basins of South America. AAPG Memoir 62, pp 383–402

    Google Scholar 

  • Weedon GP, Jenkyns HC, Coe AL et al (1999) Astronomical calibration of the Jurassic time scale from cyclostratigraphy in British mudrock formations. Philos T Roy Soc A 357:1787–1813

    CrossRef  Google Scholar 

  • Wilkin RT, Barnes HI (1997) Formation processes of framboidal pyrite. Geochim Cosmochim Ac 61:323–339

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work has been supported by different CONICET (PIP), UBA (UBACyT) and FONCyT (PICT) projects directed by R. M. Palma. We want to thank Mr. G. Herrero (Universidad Complutense de Madrid) for technical assistance and J. C. Poblete for his assistance during field work. Also, we would like to thank all the members of the Dirección de Recursos Naturales Renovables of Malargüe as well as the Researcher Group 910198 (Universidad Complutense de Madrid, Comunidad de Madrid, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo M. Palma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Palma, R.M., Bressan, G.S., Riccardi, A.C., López-Gómez, J., Martín-Chivelet, J. (2020). Environmental Controls and Facies Architecture of a Jurassic Carbonate Episode (La Manga Formation), Mendoza Province, Neuquén Basin. In: Kietzmann, D., Folguera, A. (eds) Opening and Closure of the Neuquén Basin in the Southern Andes. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-29680-3_4

Download citation