Skip to main content

Suspension and Filter Feeding in Aquatic Insects

  • Chapter
  • First Online:

Part of the book series: Zoological Monographs ((ZM,volume 5))

Abstract

Aquatic insect feeding occurs at the nexus of habitat, food source and size, and behavior and relies largely on the complexities of mouthpart morphology. This intersection has important consequences for tropic interactions, nutrient processing, and ecosystem function. In aquatic habitats, immature insects feed in a variety of ways; however, consumption of small suspended particles (seston) in the water column is a common mode for representatives of several insect groups. Ingestion of seston can occur via active or passive removal and broadly encompasses filter and suspension feeding. In this chapter, we explore the ways in which various aquatic insects acquire food particles. We focus on food sources and particle sizes, feeding behavior, morphology of mouthparts, and trophic importance. The major groups explored include Ephemeroptera (mayflies), Diptera (true flies), and Trichoptera (caddisflies), each of which have evolved unique strategies for obtaining particles from the water column. Members of this feeding group are critical as food sources for aquatic and terrestrial organisms, they play large roles in nutrient cycling, and some are vectors of important human and animal diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler PH, Crosskey RW (2018) World blackflies (Diptera: Simuliidae): a comprehensive revision of the taxonomic and geographical inventory. Available from: https://biomia.sites.clemson.edu/pdfs/blackflyinventory.pdf. Accessed 28 Sep 2018

  • Adler PH, Currie DC (2008) Simuliidae. In: Merritt RW, Cummins KW, Berg MB (eds) Aquatic insects of North America, 4th edn. Kendall/Hunt, Dubuque, pp 825–846

    Google Scholar 

  • Al-Jaibachi R, Cuthbert RN, Callaghan A (2018) Up and away: ontogenic transference as a pathway for aerial dispersal of microplastics. Biol Lett 14:20180479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alto BW, Bettinardi DJ, Ortiz S (2015) Interspecific larval competition differentially impacts adult survival in dengue vectors. J Med Entomol 52:163–170

    Article  PubMed  Google Scholar 

  • Archangelsky M (1997) Studies on the biology ecology and systematics of the immature stages of New World Hydrophiloidea (Coleoptera: Staphyliniformia). Bull Ohio Biol Sur New Ser 12:1–207

    Google Scholar 

  • Asmare YR, Hopkins J, Tekie H, Hill SR, Ignell R (2017) Grass pollen affects survival and development of larval Anopheles arabiensis (Diptera: Culicidae). J Ins Sci 17:93. https://doi.org/10.1093/jisesa/iex067

    Article  CAS  Google Scholar 

  • Austin DA, Baker JH (1988) Fate of bacteria ingested by larvae of the freshwater mayfly, Ephemera danica. Microb Ecol 15:323–332

    Article  CAS  PubMed  Google Scholar 

  • Berg CO (1950) Biology of certain Chironomidae reared from Potamogeton. Ecol Monogr 20:83–10

    Article  Google Scholar 

  • Bohle HW (1983) Drift-catching and feeding behaviour of the larvae of Drusus discolor (Trichoptera: Limnephilidae). Archiv für Hydrobiologie 97:455–470

    Google Scholar 

  • Bonada N, Dolédec S, Statzner B (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biol 13:1658–1671

    Article  Google Scholar 

  • Brittain JE (1982) Biology of Mayflies. Annu Rev Entomol 27:119–147

    Article  Google Scholar 

  • Bundschuh M, McKie BG (2016) An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Fresh Biol 61:2063–2074

    Article  CAS  Google Scholar 

  • Chen S, Kaufman MG, Korir ML, Walker ED (2014) Ingestibility digestibility and engineered biological control potential of Flavobacterium hibernum isolated from larval mosquito habitats. Appl Environ Microbiol 80:1150–1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciborowski JJH, Craig DA, Fry KM (1997) Dissolved organic matter as food for black fly larvae (Diptera: Simuliidae). J N Am Benthol Soc 16:771–780

    Article  Google Scholar 

  • Claeson SM, Li JL, Compton JE, Bisson PA (2006) Response of nutrients biofilm and benthic insects to salmon carcass addition. Can J Fish Aquat Sci 63:1230–1241

    Article  Google Scholar 

  • Clemens WA (1917) An ecological study of the mayfly Chirotenetes. Univ Toronto Biol Ser 17:1–43

    Google Scholar 

  • Clements AN (1999) The biology of mosquitoes, vol 2, Sensory reception and behavior. CAB International, Wallingford

    Google Scholar 

  • Colless DH (1977) A possibly unique feeding mechanism in the dipterous larvae. J Aust Entomol Soc 16:335–339

    Article  Google Scholar 

  • Craig DA (1974) The labrum and cephalic fans of larval Simuliidae (Diptera: Nematocera). Can J Zool 52:133–159

    Article  Google Scholar 

  • Craig DA, Galloway MM (1987) Hydrodynamics of larval black flies. In: Kim KC, Merritt RW (eds) Black flies: ecology population management and annotated world list. Pennsylvania State University Press, University Park

    Google Scholar 

  • Culler LE, Ayres MP, Virginia RA (2018) Spatial heterogeneity in the abundance and fecundity of Arctic mosquitoes. Ecosphere 9:e02345

    Article  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172

    Article  Google Scholar 

  • Cummins KW, Merritt RW, Berg MB (2008) Ecology and distribution of aquatic insects. In: Merritt RW, Cummins KW, Berg MB (eds) Aquatic insects of North America, 4th edn. Kendall/Hunt, Dubuque, pp 105–122

    Google Scholar 

  • Currie DC, Craig DA (1987) Feeding strategies of larval black flies. In: Kim KC, Merritt RW (eds) Black flies: ecology population management and annotated world list. Penn State University Press, University Park, pp 155–170

    Google Scholar 

  • Curtis WJ, Gebhard AE, Perkin JS (2018) The river continuum concept predicts prey assemblage structure for an insectivorous fish along a temperate riverscape. Freshw Sci 37:618–630

    Article  Google Scholar 

  • Dadd RH (1973) Insect nutrition: current developments and metabolic implications. Annu Rev Entomol 18:381–420

    Article  CAS  PubMed  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A 105:6668–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Nieto LM, D’Alessio C, Perotti CM, Beron CM (2016) Culex pipiens development is greatly influenced by native bacteria and exogenous yeast. PLoS One 11 doi.org/10.1371/journal.pone.0153133

  • Duguma D, Kaufman MG, Domingos ABS (2017) Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector Culex nigripalpus (Diptera: Culicidae). Ecol Evol 7:3507–3519

    Article  PubMed  PubMed Central  Google Scholar 

  • Durance I, Ormerod SJ (2007) Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biol 13:942–957

    Article  Google Scholar 

  • Eastham LES (1939) Gill movements of nymphal Ephemera danica and the water currents caused by them. J Exp Biol 16:18–33

    Google Scholar 

  • Elpers C, Tomka I (1995) Food-filtering mechanism of the larvae of Oligoneuriella rhenana Imhoff (Ephemeroptera: Oligoneuriidae). In: Corkum LD, Ciborowski J (eds) Current directions in research on Ephemeroptera. Canadian Scholars’ Press, Toronto, pp 283–293

    Google Scholar 

  • Finelli SM, David DH, Merz RA (2002) Stream insects as passive suspension feeders: effects of velocity and food concentration on feeding performance. Behav Ecol 11:145–153

    Google Scholar 

  • Focks DA, Chadee DD (1997) Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am J Trop Med Hyg 56:159–167

    Article  CAS  PubMed  Google Scholar 

  • Focks DA, Sackett SR, Bailey DL, Dame DA (1981) Observations on container-breeding mosquitoes in New Orleans, Louisiana, with an estimate of the population density of Aedes aegypti (L.). Am J Trop Med Hyg 30:1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Garros C, Ngungi N, Githeko AE, Tuno N, Yan G (2008a) Gut content identification of larvae of the Anopheles gambiae complex in western Kenya using a barcoding approach. Mol Ecol Res 8:512–518

    Article  CAS  Google Scholar 

  • Garros C, Van Nguyen C, Trung HD, Van Bortel W, Coosemans M, Manguin S (2008b) Distribution of Anopheles in Vietnam, with particular attention to malaria vectors of the Anopheles minimus complex. Malaria J 7:11

    Article  CAS  Google Scholar 

  • Graf W, Lubini V, Pauls SU (2005) Larval description of Drusus muelleri McLachlan 1868 (Trichoptera: Limnephilidae) with some notes on its ecology and systematic position within the genus Drusus. Ann Limnol Int J Lim 41:93–98

    Article  Google Scholar 

  • Guégan M, Zouache K, Démichel C, Minard G, Tran Van V, Potier P, Mavingui P, Valiente Moro C (2018) The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome 6:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannappel U, Paulus HF (1987) Arbeiten zu einem phylogenetischen System der Helodidae (Coleoptera) - Feinstrukturuntersuchungen an Larven. Zool Beitr NF 31:77–150

    Google Scholar 

  • Hansen M (1997) Phylogeny and classification of the staphyliniform beetle families (Coleoptera). Biologiske Skrifter 48:1–339

    Google Scholar 

  • Hartland-Rowe R (1953) Feeding mechanism of an ephemeropteran nymph. Nature 172:1109–1110

    Article  Google Scholar 

  • Hartland-Rowe R (1958) The biology of a tropical mayfly Povilla adusta Navas with special reference to the lunar rhythm of emergence. Rev Zool Bot Afr 58:185–202

    Google Scholar 

  • Hering D, Schmidt-Kloiber A, Murphy J, Lücke S, Zamora-MuÇoz C, López-Rodŕiguez MJ, Huber T, Graf W (2009) Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat Sci 71:3–14

    Article  Google Scholar 

  • Hershey AE, Lamberti DT, Northington RM (2010) Aquatic insect ecology In: Thorp JH, Covich PA (eds) Ecology and classification of North American freshwater invertebrates. Elsevier Science, Amsterdam, pp 659–694

    Chapter  Google Scholar 

  • Holzenthal RW, Blahnik RJ, Prather AL, Kjer LM (2007) Order Trichoptera Kirby 1813 (Insecta) Caddisflies. In: Zhang Z–Q, Shear WA (eds) Linnaeus tercentenary: progress in invertebrate taxonomy. Zootaxa 1668:1–766

    Article  Google Scholar 

  • Huryn AD, Wallace JB (2000) Life history and production of stream insects. Annu Rev Entomol 45:83–110

    Article  CAS  PubMed  Google Scholar 

  • Huryn AD, Wallace JB, Anderson NH (2008) Habitat life history secondary production and behavioral adaptations of aquatic insects. In: Merritt RW, Cummins KW, Berg MB (eds) Aquatic insects of North America, 4th edn. Kendall/Hunt, Dubuque, pp 55–104

    Google Scholar 

  • Juliano SA, Ribeiro GS, Maciel-de-Freitas R, Castro MG, Codeco C, Lourenco-de-Oliveira R, Lounibos LP (2014) She’s a femme fatale: low-density larval development produces good disease vectors. Mem Inst Oswaldo Cruz 109:1070–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan LA, Cory RM (2016) Dissolved organic matter in stream ecosystems: forms functions and fluxes of watershed tea. In: Jones JB, Stanley EH (eds) Stream ecosystems in a changing environment. Academic, Boston, pp 241–320

    Chapter  Google Scholar 

  • Kaufman MG, Walker ED (2006) Indirect effects of soluble nitrogen on growth of Ochlerotatus triseriatus larvae in container habitats. J Med Entomol 43:677–688

    CAS  PubMed  Google Scholar 

  • Kaufman MG, Goodfriend WA, Kohler-Garrigan A, Walker ED, Klug MJ (2002) Soluble nutrient effects on microbial communities and mosquito production in Ochlerotatus triseriatus habitats. Aquat Microb Ecol 29:73–88

    Article  Google Scholar 

  • Kaufman MG, Pelz-Stelinski KS, Yee DA, Juliano DA, Ostrom PH, Walker ED (2010) Stable isotope analysis reveals detrital resource base sources of the tree hole mosquito Aedes triseriatus. Ecol Entomol 35:586–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitching RL (2000) Food webs and container habitats. The natural history and ecology of phytotelmata. Cambridge University Press, England

    Book  Google Scholar 

  • Kitching RL (2001) Food webs in phytotelmata: “bottom-up” and “top-down” explanations for community structure. Annu Rev Entomol 46:729–760

    Article  CAS  PubMed  Google Scholar 

  • Klaas-Douwe BD, Monaghan MT, Pauls SU (2014) Freshwater biodiversity and diversification. Annu Rev Entomol 59:143–163

    Article  CAS  Google Scholar 

  • Kullberg A (1988) The case mouthparts silk and silk formation of Rheotanytarsus muscicola Kieffer (Chironomidae: Tanytarsini). Aqu Insect 10:249–255

    Article  Google Scholar 

  • Kurtak DC (1978) Efficiency of filter feeding of black fly larvae (Diptera: Simuliidae). Can J Zool 56:1608–1623

    Article  Google Scholar 

  • Laird M (1988) The natural history of larval mosquito habitats. Academic, London

    Google Scholar 

  • Lancaster J, Downes NJ (2013) Aquatic entomology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Lawrence JF (2016) Scirtidae. In: Beutel RG, Leschen RAB (eds) Handbook of zoology Volume IV Arthropoda Part 38 Coleoptera beetles, vol 1: Morphology and systematics (Archostemata Adephaga Myxophaga Polyphaga partim), 2nd edn. Walter de Gruyter, Berlin, pp 215–225

    Google Scholar 

  • Lounibos LP (2002) Invasions by insect vectors of human disease. Annu Rev Entomol 47:233–266

    Article  CAS  PubMed  Google Scholar 

  • Lucas P, Hunter FF (1999) Phenotypic plasticity in the labral fan of simuliid larvae (Diptera): effect of seston load on primary-ray number. Can J Zool 77:1843–1849

    Article  Google Scholar 

  • Malmqvist B (1994) Preimaginal blackflies (Diptera: Simuliideae) and their predators in a central Scandinavian lake outlet stream. Ann Zool Fennici 31:245–255

    Google Scholar 

  • Marten GG (1987) The potential of mosquito-indigestible phytoplankton for mosquito control. J Am Mosq Cont Assoc 3:105

    CAS  Google Scholar 

  • Marten GG (2007) Larvicidal algae. J Am Mosq Cont Assoc 23:177–183

    Article  Google Scholar 

  • Merritt RW, Wallace JB (1981) Filter-feeding insects. Sci Am 244:132–147

    Article  Google Scholar 

  • Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior natural food and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:379–376

    Article  Google Scholar 

  • Merritt RW, Craig DA, Wotton RS, Walker ED (1996) Feeding behavior of aquatic insects: case studies on black fly and mosquito larvae. Invert Biol 3:206–217

    Article  Google Scholar 

  • Merritt RW, Cummins KW, Berg MB (eds) (2008) Aquatic insects of North America, 4th edn. Kendall/Hunt, Dubuque

    Google Scholar 

  • Meyer JL, Edwards RT (1987) Bacteria as a food source for black fly larvae in a blackwater river. J N Am Benthol Soc 6:241–250

    Article  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley T, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  CAS  PubMed  Google Scholar 

  • Molineri CA, Siegloch E, Righi-Cavallaro KO (2010) The nymph of Tortopus harrisi Traver (Ephemeroptera: Polymitarcyidae). Zootaxa 2436:65–68

    Article  Google Scholar 

  • Morrison AC, Sihuincha M, Stancil JD, Zamora E, Astete H, Olson JG, Vidal-Ore C, Scott TW (2006) Aedes aegypti (Diptera: Culicidae) production from non-residential sites in the Amazonian city of Iquitos. Peru Ann Trop Med Parasitol 100(Suppl 1):S73–S86

    Article  PubMed  Google Scholar 

  • Nebbioso A, Piccolo A (2013) Molecular characterization of dissolved organic matter (DOM): a critical review. Anal Bioanal Chem 405(1):109–124. https://doi.org/10.1007/s00216-012-6363-2

    Article  CAS  PubMed  Google Scholar 

  • Newbold JD, O'Neill RV, Elwood JW, Winkle WV (1982) Nutrient spiralling in streams: implications for nutrient limitation and invertebrate activity. Am Nat 120:628–652

    Article  Google Scholar 

  • Ohkawa A, Ito T (2001) Terrestrial insect ingestion by filter feeding caddisfly larvae Brachycentrus Brachycentrus americanus (Trichoptera). J Freshw Ecol 16:263–266

    Article  Google Scholar 

  • Osterling EM, Bergman E, Greenberg LA, Baldwin BS, Mills EL (2007) Turbidity-mediated interactions between invasive filter-feeding mussels and native bioturbating mayflies. Fresh Biol 52:1602–1610

    Article  Google Scholar 

  • Palmer RW, Craig DA (2000) An ecological classification of primary labral fans of filter-feeding black fly (Diptera: Simuliidae) larvae. Can J Zool 78:199–218

    Article  Google Scholar 

  • Parkes AH, Kalff J, Boisvert J, Cabana G (2004) Feeding by black fly (Diptera: Simuliidae) larvae causes downstream losses in phytoplankton but not bacteria. J N Am Benthol Soc 23:780–792

    Article  Google Scholar 

  • Pinder LCV (1986) Biology of freshwater Chironomidae. Annu Rev Entomol 3:1–23

    Article  Google Scholar 

  • Plague GR, McArthur JV (2003) Phenotypic plasticity of larval retreat design in a net-spinning caddisfly. Behav Ecol 14:221–226

    Article  Google Scholar 

  • Pucat AM (1965) The functional morphology of the mouthparts of some mosquito larvae. Quaestiones Entomologicae 1:41–86

    Google Scholar 

  • Ramírez A, Gutiérrez-Fonseca PR (2014) Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista de Biología Tropical 62:155–167

    Article  PubMed  Google Scholar 

  • Roberts D (2014) Mosquito larvae change their feeding behavior in response to kairomones from some predators. J Med Entomol 51:368–374

    Article  PubMed  Google Scholar 

  • Ross DH (1964) Evolution of caddisworm cases and nets. Am Zool 4:209–220

    Article  Google Scholar 

  • Ross DH, Craig DA (1980) Mechanisms of fine particles capture by the larval black flies (Diptera: Simuliidae). Can J Zool 58:1186–1192

    Article  CAS  PubMed  Google Scholar 

  • Rothmeier G, Jäch MA (1986) Spercheidae, the only filter-feeders among Coleoptera. Proceedings of the third European congress of entomology (Amsterdam) 1986:133–137

    Google Scholar 

  • Scott DC, Berner L, Hirsch A (1959) The nymph of the mayfly genus Tortopus. Annu Entomol Soc 52:205–213

    Article  Google Scholar 

  • Sehnal F, Sutherland T (2008) Silks produced by insect labial glands. Prion 2:145–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapas TJ, Hilsenhoff WL (1976) Feeding habits of Wisconsin’s predominant lotic Plecoptera, Ephemeroptera, and Trichoptera. Great Lakes Entomol 9:175–188

    Google Scholar 

  • Skiff JJ, Yee DA (2015) The effects of protozoans on larval container mosquito performance. Annu Entomol Soc Am 108:282–288

    Article  CAS  Google Scholar 

  • Souza RS, Diaz-Albiter HM, Dillon VM, Dillon RJ, Genta FA (2016) Digestion of yeasts and beta-1 3-glucanases in mosquito larvae: physiological and biochemical considerations. PLoS One 11:e0151403. https://doi.org/10.1371/journal.pone.0151403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steyn A, Roets F, Botha A (2016) Yeasts associated with Culex pipiens and Culex theileri mosquito larvae and the effect of selected yeast strains on the ontogeny of Culex pipiens. Microb Ecol 71:747–760. https://doi.org/10.1007/s00248-015-0709-1

    Article  CAS  PubMed  Google Scholar 

  • Stork NE (2018) How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol 63:31–45

    Article  CAS  PubMed  Google Scholar 

  • Strand M (2017) The gut microbiota of mosquitoes: diversity and function. In: Wikel S, Aksoy S, Dimopoulos G (eds) Arthropod vector: controller of disease transmission, vol 1, pp 185–199

    Chapter  Google Scholar 

  • Tsurim I, Silberbush A (2016) Detrivory competition and apparent predation by Culiseta longiareolata in a temporary pool ecosystem. Israel J Ecol Evol 62:138–142

    Article  Google Scholar 

  • Tuno N, Kohzu A, Tayasu I, Nakayama T, Githeko A, Yan G (2018) An algal diet accelerates larval growth of Anopheles gambiae (Diptera: Culicidae) and Anopheles arabiensis (Diptera: Culicidae). J Med Entomol 55:600–608

    Article  CAS  PubMed  Google Scholar 

  • Valzania L, Martinson VG, Harrison RE, Boyd BM, Coon KL, Brown MR, Strand MR (2018) Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae. PLoS Negl Trop Dis 12:e0006638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vezzani D (2007) Review: artificial container-breeding mosquitoes and cemeteries: a perfect match. Trop Med Inter Health 12:299–313

    Article  Google Scholar 

  • Wagner R, Barták M, Borkent A, Courtney G, Goddeeris B, Haenni J-P, Knutson L, Pont A, Rotheray GE, Rozkosný R, Sinclair B, Woodley N, Zatwarnicki T, Zwick P (2008) Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae). In: Balian EV, Lévêque C, Segers H, Martens K (eds) Freshwater animal diversity assessment. Springer, Dordrecht, pp 489–519

    Chapter  Google Scholar 

  • Walker ED, Olds EJ, Merritt RW (1988) Gut content analysis of mosquito larvae (Diptera: Culicidae) using DAPI stain and epifluorescence microscopy. J Med Entomol 25:551–554

    Article  CAS  PubMed  Google Scholar 

  • Walker ED, Kaufman MG, Merritt RW (2010) An acute trophic cascade among microorganisms in the tree hole ecosystem following removal of omnivorous mosquito larvae. Comm Ecol 11:171–178

    Article  CAS  Google Scholar 

  • Wallace J, Hutchens JJ (2000) Effects of invertebrates on lotic ecosystem processes. In: Coleman DC, Hendrix PF (eds) Invertebrates as webmasters in ecosystems. CAB International, Wallingford, pp 73–96

    Google Scholar 

  • Wallace JB, Malas D (1976) The fine structure of capture nets of larval Philopotamidae with special emphasis on Dolophilodesd istinctus. Can J Zool 54:1788–1802

    Article  Google Scholar 

  • Wallace JB, Merritt RW (1980) Filter-feeding ecology of aquatic insects. Annu Rev Entomol 25:103–132

    Article  Google Scholar 

  • Wallace JB, O’Hop J (1979) Fine particle suspension-feeding capabilities of Isonychia spp (Ephemeroptera: Siphlonuridae). Annu Entomol Soc Am 72:353–357

    Article  Google Scholar 

  • Wallace JB, Sherberger FF (1974) The larval retreat and feeding net of Macronema carolina Banks (Trichoptera: Hydropsychidae). Hydrobiology 45:177–184

    Article  Google Scholar 

  • Webster JR, Newbold JD, Lin L (2016) Nutrient spiraling and transport in streams: the importance of in-stream biological processes to nutrient dynamics in streams. In: Jones JB, Stanley E (eds) Stream ecosystems in a changing environment. Elsevier, pp 181-239

    Google Scholar 

  • Wiggins GB (1996) Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press

    Google Scholar 

  • Wiggins GB (2005) Caddisflies the underwater architects. NRC Press co-published with The University of Toronto Press and the Royal Ontario Museum, Ottawa

    Google Scholar 

  • Winters AE, Yee DA (2012) Variation in performance of two co-occurring mosquito species across diverse resource environments: insights from nutrient and stable isotope analyses. Ecol Entomol 37:56–64

    Article  Google Scholar 

  • Wondwosen B, Hill SR, Birgersson G, Seyoum E, Tekie H, Ignell R (2017) A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Mallar J 16:39

    Article  CAS  Google Scholar 

  • Wondwosen B, Birgersson G, Tekie H, Torto B, Ignell R, Hill SR (2018) Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Mal J 17:90

    Article  CAS  Google Scholar 

  • Wotton RS (1988) Very high secondary production at a lake outlet. Freshw Biol 20:341–346

    Article  Google Scholar 

  • Wotton RS (1994) The biology of particles in aquatic systems, 2nd edn. Taylor & Francis

    Google Scholar 

  • Wotton RS (2009) Feeding in blackfly larvae (Diptera: Simuliidae) – the capture of colloids. Acta Zool Lituanica 19:64–67

    Article  Google Scholar 

  • Wotton RS, Malmqvist B (2001) Feces in aquatic ecosystems feeding animals transform organic matter into fecal pellets which sink or are transported horizontally by currents; these fluxes relocate organic matter in aquatic ecosystems. BioScience 51:537–544

    Article  Google Scholar 

  • Wotton R, Malmqvist B, Muotka T, Larsson K (1998) Fecal pellets from a dense aggregation of suspension-feeders in a stream: an example of ecosystem engineering. Limno Ocean 43:719–725

    Article  Google Scholar 

  • Xu Y, Chen S, Kaufman MG, Maknojia S, Bagdasarian M, Walker ED (2008) Bacterial community structure in tree hole habitats of Ochlerotatus triseriatus: influences of larval feeding. J Am Mosq Control Assoc 24:219–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Yee DA (2008) Tires as habitats for mosquitoes: a review of studies within the eastern United States. J Med Entomol 45:581–593

    PubMed  Google Scholar 

  • Yee DA (2016) What can larval ecology tell us about the success of Aedes albopictus (Diptera: Culicidae) in the United States? J Med Entomol 53:1002–1012

    Article  PubMed  Google Scholar 

  • Yee DA, Juliano SA (2006) Consequences of detritus type in an aquatic microsystem: assessing water quality, microorganisms, and the performance of the dominant consumer. Fresh Biol 51:448–459

    Article  Google Scholar 

  • Yee DA, Kehl S (2014) Order Coleoptera (Vol I Chapter 39) In: Thorp JH, Rogers C, Tockner K (eds) Vol I: Ecology and general biology. In: Thorp JH, Covich A (eds) Freshwater invertebrates, pp 1004–1043

    Google Scholar 

  • Yee DA, Kesavaraju B, Juliano SA (2004) Interspecific differences in feeding behavior and survival under food-limited conditions for larval Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Annu Entomol Soc Am 97:720–728

    Article  Google Scholar 

  • Yee DA, Kaufman MG, Juliano SA (2007) The significance of ratios of detritus types and micro-organism productivity to competitive interactions between aquatic insect detritivores. J Anim Ecol 76:1105–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Yee DA, Kaufman MG, Ezeakacha NF (2015) How diverse detrital environments influence nutrient stoichiometry between males and females of the co-occurring container mosquitoes Aedes albopictus Ae aegypti and Culex quinquefasciatus. PLoS One. https://doi.org/10.1371/journal.pone.0133734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou CF (2010) Accessory gills in mayflies (Ephemeroptera). Stuttgarter Beiträge zur Naturkunde A Neue Serie 3:79–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Yee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yee, D.A., Kaufman, M.G. (2019). Suspension and Filter Feeding in Aquatic Insects. In: Krenn, H. (eds) Insect Mouthparts. Zoological Monographs, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-29654-4_4

Download citation

Publish with us

Policies and ethics