Skip to main content

Mineral and Plant Oils as Management Tools to Control Insect Vectors of Phytoplasmas

  • Chapter
  • First Online:
Sustainable Management of Phytoplasma Diseases in Crops Grown in the Tropical Belt

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 12))

  • 295 Accesses

Abstract

Phytoplasmas are small unculturable and wall-less prokaryotes that are transmitted by phloem-feeder insects. Depending on the economic value of the plants they infect and/or the lifespan of the infected plants, phytoplasma infection can have devastating economic impacts in term of fruit/seed production and quality. To date, there is no commercially available methods to control phytoplasma in plants or insects. Phytoplasma disease management is frequently achieved by spraying insecticides to control the insect vector population. However, this method is not environmentally friendly and have several shortcomings such as favoring insect resistance. Plant and mineral oils have been used to control insect pests for many decades, whether as solvent, adhesives or because of their direct insecticidal properties. This chapter reviews elements relevant to direct or indirect management of insect vectors of phytoplasmas using mineral or plant oils, focusing on oil structure, composition and properties as well as mode of actions. Factors influencing their efficacy as insectides is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhvaryu, A., Liu, Z., & Erhan, S. (2005). Synthesis of novel alkoxylated triacylglycerols and their lubricant base oil properties. Industrial Crops and Products, 21(1), 113–119.

    Article  CAS  Google Scholar 

  • Agnello, M. A. (2002). Petroleum derived spray oils: Chemistry, history, refining and formulation. In G. A. C. Beattie, D. M. Watson, M. L. Stevens, D. J. Rae, & R. N. Spooner-Hart (Eds.), Spray oils beyond 2000 (pp. 2–18). Sydney, Australia: University of Western Sydney.

    Google Scholar 

  • Al-Daoud, F., Fageria, M. S., Zhang, J., Boquel, S., & Pelletier, Y. (2014). Mineral oil inhibits movement of potato virus Y in potato plants in an age-dependent manner. American Journal of Potato Research, 91(4), 337–345.

    Article  CAS  Google Scholar 

  • Al-Mrabeh, A., Anderson, E., Torrance, L., Evans, A., & Fenton, B. (2010). A literature review of insecticide and mineral oil use in preventing the spread of non-persistent viruses in potato crops. Retrieved from Agriculture and Horticulture Development Board, Kenilworth, UK. https://ahdb.org.uk/

  • Ameline, A., Couty, A., Martoub, M., & Giordanengo, P. (2009). Effects of mineral oil application on the orientation and feeding behaviour of Macrosiphum euphorbiae (Homoptera: Aphidae). Acta Entomologica Sinica, 52(6), 617–623.

    Google Scholar 

  • Ameline, A., Couty, A., Martoub, M., Sourice, S., & Giordanengo, P. (2010). Modification of Macrosiphum euphorbiae colonisation behaviour and reproduction on potato plants treated by mineral oil. Entomologia Experimentalis et Applicata, 135(1), 77–84.

    Article  Google Scholar 

  • Baebler, S., Krecic-Stres, H., Rotter, A., Kogovsek, P., Cankar, K., Kok, E. J., Gruden, K., Kovac, M., Zel, J., Pompe-Novak, & Ravnikar, M. (2009). PVYNTN elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Molecular Plant Pathology, 10(2), 263–275. https://doi.org/10.1111/j.1364-3703.2008.00530.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass, C., & Field, L. M. (2011). Gene amplification and insecticide resistance. Pest Management Science, 67(8), 886–890. https://doi.org/10.1002/ps.2189

    Article  CAS  PubMed  Google Scholar 

  • Battersby, N. S., Pack, S. E., & Watkinson, R. J. (1998). A correlation between the biodegradability of oil products in the CEC L-33-T-82 and modified strum tests. Chemosphere, 24, 1998–2000.

    Google Scholar 

  • Beattie, G. A. C., & Hardy, S. (2005). Using petroleum-based spary oils in citrus. Agfacts, p. 7.

    Google Scholar 

  • Beattie, G. A. C., Liu, Z. M., Watson, D. M., Clift, A. D., & Jiang, L. (1995). Evaluation of petroleum spray oils and polysaccharides for control of Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). Journal of the Australian Entomological Society, 34, 349–353.

    Article  Google Scholar 

  • Belli, G., Bianco, P. A., & Conti, M. (2010). Grapevine yellows in Italy: Past, present and future. Journal of Plant Pathology, 92, 303–326.

    Google Scholar 

  • Boiteau, G., Singh, M., & Lavoie, J. (2009). Crop border and mineral oil sprays used in combination as physical control methods of the aphid-transmitted potato virus Y in potato. Pest Management Science, 65, 255–259.

    Article  CAS  PubMed  Google Scholar 

  • Boiteau, G., & Singh, R. P. (1982). Evaluation of mineral oil sprays for reduction of virus Y spread in potatoes. American Potato Journal, 59(6), 253–262. https://doi.org/10.1007/bf02856561

    Article  Google Scholar 

  • Boiteau, G., & Wood, F. A. (1982). Persistence of mineral-oil spray deposits on potato leaves. American Potato Journal, 59, 55–63.

    Article  Google Scholar 

  • Boquel, S. (2014). Penetration kinetics of Superior 70 mineral oil in a potato plant. Retrieved from https://open.canada.ca/data/en/dataset/7344deb1-c372-4dec-999a-efd710489d62

  • Boquel, S., Giguère, M. A., Clark, C., Nanayakkara, U., Zhang, J., & Pelletier, Y. (2013). Effect of mineral oil on Potato virus Y acquisition by Rhopalosiphum padi. Entomologia Experimentalis et Applicata, 148(1), 48–55.

    Article  Google Scholar 

  • Boquel, S., Giguère M. A., & Pelletier, Y. (2016) Effect of mineral oils on host plant selection and probing behavior of Rhopalosiphum padi. Entomologia Experimentalis et Applicata, 160, 241–250.

    Google Scholar 

  • Boquel, S., Hepat, R., & Nie, X. (2017). Advances in elucidating the mode of action of mineral oil on reduction of aphid-mediated PVY transmission. Canadian Journal of Plant Pathology, 39(1), 90–90.

    Google Scholar 

  • Bradley, R. (1963). Some ways in which a paraffin oil impedes aphid transmission of potato virus Y. Canadian Journal of Microbiology, 9(3), 369–380.

    Article  Google Scholar 

  • Bradley, R., Moore, C., & Pond, D. (1966). Spread of potato virus Y curtailed by oil. Nature, 209(5030), 1370–1371.

    Article  Google Scholar 

  • Bradley, R., Wade, C., & Wood, F. (1962). Aphid transmission of potato virus Y inhibited by oils. Virology, 18(2), 327–329.

    Article  CAS  PubMed  Google Scholar 

  • Bruce, T. J. A., & Pickett, J. A. (2011). Perception of plant volatile blends by herbivorous insects – Finding the right mix. Phytochemistry, 72(13), 1605–1611. https://doi.org/10.1016/j.phytochem.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  • Buteler, M., & Stadler, T. (2011). A review on the mode of action and current use of petroleum distilled spray oils. In M. Stoytcheva (Ed.), Pesticides in the modern world – Pesticides use and management (pp. 119–136). Croatia: InTech.

    Google Scholar 

  • Butler, G. D., & Henneberry, T. J. (1990). Pest control in vegetables and cotton with household cooking oils and liquid detergents. Southwestern Entomologist, 15, 123–131.

    Google Scholar 

  • Cen, Y. J., Tian, M. Y., Pang, X. F., & Rae, D. J. (2002). Repellency, anti feeding effect and toxicity of an horticultural mineral oil against citrus red mite. In G. A. C. Beattie, D. M. Watson, M. L. Stevens, D. J. Rae, & R. N. Spooner-Hart (Eds.), Spray oils beyond 2000 (pp. 134–141). Sydney, Australia: University Of Western Sydney.

    Google Scholar 

  • Daniel, C. (2014). Rhagoletis cerasi: Oviposition reduction effects of oil products. Insects, 5(2), 319–331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson, N., Dibble, J., Flint, M., Marer, P., & Guye, A. (1991). Managing insects and mites with spray oils. Oakland, CA: University of California.

    Google Scholar 

  • de Ong, E. R., Knight, H., & Chamberlin, J. C. (1927). A preliminary study of petroleum oil as an insecticide for citrus trees. Hilgardia, 2, 351–384.

    Article  Google Scholar 

  • Dekker, M. H., Piersma, T., & Sinninghe Damsté, J. S. (2000). Molecular analysis of intact preen waxes of Calidris canutus (Aves: Scolopacidae) by gas chromatography/mass spectrometry. Lipids, 35(5), 533–541.

    Article  CAS  PubMed  Google Scholar 

  • Ebbon, G. P. (2002). Environmental and health aspects of agricultural spray oils. In G. A. C. Beattie, D. M. Watson, M. L. Stevens, D. J. Rae, & R. N. Spooner-Hart (Eds.), Spray oils beyond 2000 (pp. 232–246). Sydney, Australia: University of Western Sydney.

    Google Scholar 

  • Fageria, M., Boquel, S., Leclair, G., & Pelletier, Y. (2014). Quantification of mineral oil accumulation and movement in potato plants and its significance in potato virus Y management. Pest Management Science, 70(8), 1243–1248. https://doi.org/10.1002/ps.3682

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, D. E., Beers, E. H., Brunner, J. F., Doerr, M., & Dunley, J. E. (2001). Mineral oil inhibition of white apple leafhopper (Homoptera: Cicadellidae) oviposition. Journal of Economic Entomology, 36(3), 237–243.

    Google Scholar 

  • Field, L., Blackman, R. L., Tyler-Smith, C., & Devonshire, A. (1999). Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochemical Journal, 339(3), 737–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furness, G. O., Walker, D. A., Johnson, P. G., & Riehl, L. A. (1987). High resolution g.l.c. specifications for plant spray oils. Pesticide Science, 18(2), 113–128. https://doi.org/10.1002/ps.2780180205

    Article  CAS  Google Scholar 

  • Gholizadeh, A., Santha, I. M., Kohnehrouz, B. B., Lodha, M. L., & Kapoor, H. C. (2005). Cystatins may confer viral resistance in plants by inhibition of a virus-induced cell death phenomenon in which cysteine proteinases are active: Cloning and molecular characterization of a cDNA encoding cysteine-proteinase inhibitor (celostatin) from Celosia cristata (crested cock’s comb). Biotechnology and Applied Biochemistry, 42(3), 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Groves, R., Charkowski, A., Crockford, A., Coltman, R., Hafner, R., & Bula, K. (2009). Integrated pest and disease management: Reducing current season spread of potato virus Y in potato. Phytopathology, 99, S47.

    Google Scholar 

  • Hausinger, R. P. (2004). Fe(II)/α-Ketoglutarate-dependent hydroxylases and related enzymes. Critical Reviews in Biochemistry and Molecular Biology, 39(1), 21–68. https://doi.org/10.1080/10409230490440541

    Article  CAS  PubMed  Google Scholar 

  • Hodgkinson, M., Johnson, D., & Smith, G. (2002). Using FTIR to predict the potential for petroleum-derived spray oils to photodegrade. In G. A. C. Beattie, D. M. Watson, M. L. Stevens, D. J. Rae, & R. N. Spooner-Hart (Eds.), Spay oils beyond 2000 (pp. 72–76). Sydney, Australia: University of Western Sydney.

    Google Scholar 

  • Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.-H., Yu, J.-Q., & Chen, Z. (2010). Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology, 153(4), 1526–1538. https://doi.org/10.1104/pp.110.157370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov, D. S., Lević, J. D., & Sredanović, S. A. (2010). Fatty acid composition of various soybean products. Food and Feed Research, 2, 65–70.

    Google Scholar 

  • Khelifa, M. (2017). Possible induction of potato plant defences against potato virus Y by mineral oil application. European Journal of Plant Pathology, 147(2), 339–348. https://doi.org/10.1007/s10658-016-1006-7

    Article  CAS  Google Scholar 

  • Kirchner, S. M., Hiltunen, L. H., Santala, J., Döring, T. F., Ketola, J., Kankaala, A., Virtanen, E., & Valkonen, J. P. T. (2014). Comparison of straw mulch, insecticides, mineral oil, and birch extract for control of transmission of potato virus Y in seed potato crops. Potato Research, 57(1), 59–75. https://doi.org/10.1007/s11540-014-9254-4

    Article  CAS  Google Scholar 

  • Koch, K., Bhushan, B., & Barthlott, W. (2008). Diversity of structure, morphology and wetting of plant surfaces. Soft Matter, 4(10), 1943–1963. https://doi.org/10.1039/B804854A

    Article  CAS  Google Scholar 

  • Lancaster, A. l., Deyton, D., Sams, C., Cummins, J., Pless, C., & Fare, D. (2002). Soybean oil controls two-spotted spider mites on burning bush. Journal of Environmental Horticulture, 20(2), 86–92.

    Google Scholar 

  • Larew, H. G., & Locke, J. C. (1990). Repellency and toxicity of a horticultural oil against whiteflies on chrysanthemum. HortScience, 25, 1406–1407.

    Article  CAS  Google Scholar 

  • Lin, K. C., Bushnell, W. R., Szabo, L. J., & Smith, A. G. (1996). Isolation and expression of a host response gene family encoding thaumatinlike proteins in incompatible oat-stem rust fungus interactions. Molecular Plant-Microbe Interactions, 9, 511–522.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Beattie, G., Hodgkinson, M., Rose, H., & Jiang, L. (2001). Influence of petroleum-derived spray oil aromaticity, equivalent n-paraffin carbon number and emulsifier concentration on oviposition by citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). Australian Journal of Entomology, 40(2), 193–197.

    Article  Google Scholar 

  • Liu, Z., Beattie, G., Johnson, D., & Spooner-Hart, R. (2002). Influence of deposits of a horticultural mineral oil and selected fractions of paraffinic and naphthenic petroleum-derived oils on oviposition by Queensland fruit fly on tomato fruit. Spray Oils Beyond, 2000, 142–146.

    Google Scholar 

  • Loebenstein, G., Alper, M., & Deutsch, M. (1964). Preventing aphid-spread Cucumber mosaic virus with oils. Phytopathology, 54, 960–962.

    Google Scholar 

  • MacKenzie, T. D., Lavoie, J., Nie, X., & Singh, M. (2017). Effectiveness of combined use of mineral oil and insecticide spray in reducing Potato Virus Y (PVY) spread under field conditions in New Brunswick, Canada. American Journal of Potato Research, 94(1), 70–80.

    Article  CAS  Google Scholar 

  • MacKenzie, T. D., Nie, X., & Singh, M. (2016). Crop management practices and reduction of on-farm spread of potato virus Y: A 5-year study in commercial potato fields in New Brunswick, Canada. American Journal of Potato Research, 93(6), 552–563.

    Article  Google Scholar 

  • Martín-López, B., Varela, I., Marnotes, S., & Cabaleiro, C. (2006). Use of oils combined with low doses of insecticide for the control of Myzus persicae and PVY epidemics. Pest Management Science: Formerly Pesticide Science, 62(4), 372–378.

    Article  CAS  Google Scholar 

  • Martoub, M., Couty, A., Giordanengo, P., & Ameline, A. (2011). Opposite effects of different mineral oil treatments on Macrosiphum euphorbiae survival and fecundity. Journal of Pest Science, 84(2), 229–233.

    Article  Google Scholar 

  • Mensah, R. K., Frerot, B., & Al Dabel, F. (2005). Effects of petroleum spray oils on oviposition behaviour and larval survival of Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) and Ostrinia nubilalis Hubner (Lepidoptera: Pyralidae). International Journal of Pest Management, 51(2), 111–119.

    Article  CAS  Google Scholar 

  • Najar-Rodriguez, A. J., Lavidis, N. A., Mensah, R. K., Choy, P. T., & Walter, G. H. (2008). The toxicological effects of petroleum spray oils on insects - evidence for an alternative mode of action and possible new control options. Food and Chemical Toxicology, 46(9), 3003–3014. https://doi.org/10.1016/j.fct.2008.05.042

    Article  CAS  PubMed  Google Scholar 

  • Najar-Rodríguez, A. J., Walter, G. H., & Mensah, R. K. (2007a). The efficacy of a petroleum spray oil against Aphis gossypii Glover on cotton. Part 1: Mortality rates and sources of variation. Pest Management Science: Formerly Pesticide Science, 63(6), 586–595.

    Article  CAS  Google Scholar 

  • Najar-Rodríguez, A. J., Walter, G. H., & Mensah, R. K. (2007b). The efficacy of a petroleum spray oil against Aphis gossypii glover on cotton. Part 2: Indirect effects of oil deposits. Pest Management Science: Formerly Pesticide Science, 63(6), 596–607.

    Article  CAS  Google Scholar 

  • Nicetic, O., Cho, Y. R., & Rae, D. J. (2011). Impact of physical characteristics of some mineral and plant oils on efficacy against selected pests. Journal of Applied Entomology, 135(3), 204–213. https://doi.org/10.1111/j.1439-0418.2010.01553.x

    Article  Google Scholar 

  • Nikolakakis, N., Margaritopoulos, J., & Tsitsipis, J. (2003). Performance of Myzus persicae (Hemiptera: Aphididae) clones on different host-plants and their host preference. Bulletin of Entomological Research, 93(3), 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Nollet, L. M. L., & Rathore, H. S. (2017). Green pesticides handbook: Essential oils for pest control. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Olivier, C., Vincent, C., Saguez, J., Galka, B., Weintraub, P. G., & Maixner, M. (2012). Leafhoppers and planthoppers: Their bionomics, pathogen transmission and management in vineyards. In Arthropod management in Vineyards (pp. 253–270). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Orozco-Santos, M., Robles-González, M., Hernández-Fuentes, L. M., Velázquez-Monreal, J. J., de Jesús Bermudez-Guzmán, M., Manzanilla-Ramírez, M., Manzo-Sanchez, G., & Nieto-Ángel, D. (2016). Uso de Aceites y Extractos Vegetales para el Control de Diaphorina citri Kuwayama1 en Lima Mexicana en el Trópico Seco de México. Southwestern Entomologist, 41(4), 1051–1067.

    Google Scholar 

  • Ouyang, G., Fang, X., Lu, H., Zhou, X., Meng, X., Yu, S., Guo, M., & Xia, Y. (2013). Repellency of five mineral oils against Diaphorina citri (Hemiptera: Liviidae). Florida Entomologist, 96(3), 974–983.

    Google Scholar 

  • Pavela, R., & Herda, G. (2007). Repellent effects of pongam oil on settlement and oviposition of the common greenhouse whitefly Trialeurodes vaporariorum on chrysanthemum. Insect Sci., 14(3), 219–224.

    Article  Google Scholar 

  • Perring, T. M., Gruenhagen, N. M., & Farrar, C. A. (1999). Management of plant viral diseases through chemical control of insect vectors. Annual Review of Entomology, 44(1), 457–481. https://doi.org/10.1146/annurev.ento.44.1.457

    Article  CAS  PubMed  Google Scholar 

  • Peters, D., & Lebbink, G. (1975). The inhibitory action of mineral oil on the number of local lesions on Nicotiana glutinosa L. leaves inoculated with tobacco mosaic virus. Virology, 65(2), 574–578.

    Article  CAS  PubMed  Google Scholar 

  • Powell, G. (1992). The effect of mineral oil on stylet activities and potato virus Y transmission by aphids. Entomologia Experimentalis et Applicata, 63(3), 237–242.

    Article  Google Scholar 

  • Powell, G., Hardie, J., & Pickett, J. (1998). The effects of antifeedant compounds and mineral oil on stylet penetration and transmission of potato virus Y by Myzus persicae (Sulz.)(Hom., Aphididae). Journal of Applied Entomology, 122(1–5), 331–333.

    Article  CAS  Google Scholar 

  • Qiu, J. Y., & Pirone, T. P. (1989). Assessment of the effect of oil on the Potyvirus aphid transmission process. Journal of Phytopathology, 127(3), 221–226. https://doi.org/10.1111/j.1439-0434.1989.tb01132.x

    Article  Google Scholar 

  • Raccah, B., Antignus, Y., & Cohen-Braun, M. (1983). Effect of a combination of a mineral oil and a pyrethroid on the transmission of CMV in laboratory and on the natural infection of MDMV in a corn field. In: Proceedings of the 4th International Congress of Phytopathology, Melbourne, p. 231.

    Google Scholar 

  • Rae, D., Liang, W., Watson, D., Beattie, G., & Huang, M. (1997). Evaluation of petroleum spray oils for control of the Asian citrus psylla, Diaphorina citri (Kuwayama)(Hemiptera: Psyllidae), in China. International Journal of Pest Management, 43(1), 71–75.

    Article  CAS  Google Scholar 

  • Regnault-Roger, C., Vincent, C., & Arnason, J. T. (2012). Essential oils in insect control: Low-risk products in a high-stakes world. Annual Review of Entomology, 57(1), 405–424. https://doi.org/10.1146/annurev-ento-120710-100554

    Article  CAS  PubMed  Google Scholar 

  • Riedl, H., Halaj, J., Kreowski, W. B., Hilton, R. J., & Westigard, P. H. (1995). Laboratory evaluation of mineral oils for control of codling moth (Lepidoptera: Tortricidae). Journal of Economic Entomology, 88(1), 140–147. https://doi.org/10.1093/jee/88.1.140

    Article  Google Scholar 

  • Riehl, L. (1969). Advances relevant to narrow-range spray oils for citrus pest control. Proceedings of the First International Citrus Symposium, 2, 897–907.

    Google Scholar 

  • Rohrbaugh, P. W. (1934). Penetration and accumulation of petroleum spray oils in the leaves, twigs, and fruit of Citrus trees. Plant Physiology, 9(4), 699–730. https://doi.org/10.1104/pp.9.4.699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rongai, D., Cerato, C., Lazzeri, L., Palmieri, S., & Patalano, G. (2008). Vegetable oil formulation as biopesticide to control California red scale (Aonidiella aurantii Maskell). Journal of Pest Science, 81(4), 179–185.

    Article  Google Scholar 

  • Saguez, J., Olivier, C., Lasnier, J., Hamilton, A., Stobbs, L., & Vincent, C. (2015). Biology and integrated management of leafhoppers and phytoplasma diseases in vineyards of eastern Canada. Technical Bulletin, A59-32/2015E-PDF, Agriculture and Agri-Food Canada, 67p.

    Google Scholar 

  • Samara, R., Lowery, D., Stobbs, L., Vickers, P., & Bittner, L. (2016). Horticultural mineral oil influences Plum pox virus transmission by Myzus persicae. Journal of Applied Entomology, 140(9), 688–696.

    Article  CAS  Google Scholar 

  • Sams, C. E., & Deyton, D. E. (2002). Botanical and fish oils: Histiory, chemistry, refining, formulation and current uses. In G. A. C. Beattie, D. M. Watson, M. L. Stevens, D. J. Rae, & R. N. Spooner-Hart (Eds.), Spray oils beyond 2000 (pp. 19–28). Sydney, Australia: University of Western Sydney.

    Google Scholar 

  • Schmutterer, H. (1990). Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology, 35(1), 271–297.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, M. P. (2006). Plant-oil-based lubricants and hydraulic fluids. Journal of the Science of Food and Agriculture, 86(12), 1769–1780. https://doi.org/10.1002/jsfa.2559

    Article  CAS  Google Scholar 

  • Shands, W. A. (1977). Control of aphid-borne potato virus Y in potatoes with oil emulsions. American Potato Journal, 54, 179–187.

    Article  Google Scholar 

  • Simons, J. N., McLean, D., & Kinsey, M. (1977). Effects of mineral oil on probing behavior and transmission of stylet-borne viruses by Myzus persicae. Journal of Economic Entomology, 70(3), 309–315.

    Article  Google Scholar 

  • Simons, J. N., & Zitter, T. A. (1980). Use of oils to control aphid-borne. Plant Disease, 64(6), 543.

    Article  Google Scholar 

  • Singh, O., Rathore, H. S., & Nollet, L. M. L. (2015). Biochemical pesticides: Oil pesticides. In L. M. L. Nollet & H. S. Rathore (Eds.), Biopesticides handbook (pp. 183–224). Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Smith, E. H. (1952). Tree spray oils. Advances in Chemistry, Series, 7, 3–11.

    Article  CAS  Google Scholar 

  • Sporleder, M., & Lacey, L. A. (2013). Biopesticides. In P. Giordanengo, C. Vincent, & A. Alyokhin (Eds.), Insect pests of potato: Global perspectives on biology and management (pp. 463–497). Waltham, MA: Elsevier.

    Chapter  Google Scholar 

  • Stadler, T., & Buteler, M. (2009). Modes of entry of petroleum distilled spray-oils into insects: A review. Bulletin of Insectology, 62(2), 169–177.

    Google Scholar 

  • Stadler, T., Zerba, M. A., & Buteler, M. (2002). Toxicity and cuticle softening effect of mineral and vegetable oils on the cotton boll weevil. In G. A. C. Beattie, D. M. Watson, M. L. Stevens, D. J. Rae, & R. N. Spooner-Hart (Eds.), Spray oils beyond 2000 (pp. 152–155). Sydney, Australia: University of Western Sydney.

    Google Scholar 

  • Szatmari-Goodman, G., & Nault, L. R. (1983). Tests of oil sprays for suppression of aphid-borne maize dwarf mosaic virus in Ohio sweet corn. Journal of Economic Entomology, 76(1), 144–149. https://doi.org/10.1093/jee/76.1.144

    Article  Google Scholar 

  • Tan, B. L., Sarafis, V., Beattie, G. A. C., White, R., Darley, E. M., & Spooner-Hart, R. (2005). Localization and movement of mineral oil in plants by fluorescence and confocal microscopy. Journal of Experimental Botany, 56(420), 2755–2763. https://doi.org/10.1093/jxb/eri269

    Article  CAS  PubMed  Google Scholar 

  • Taverner, P. (2002). Drowning or just waving? A perspective on the ways petroleum-derived oils kill arthropod pests of plants. In G. A. C. Beattie, D. M. Watson, M. L. Stevens, D. J. Rae, & R. N. Spooner-Hart (Eds.), Spray oils beyond 2000 (pp. 78–86). Sydney, Australia: University of Western Sydney.

    Google Scholar 

  • Taverner, P., Gunning, R., Kolesik, P., Bailey, P., Inceoglu, B., Hammock, B., & Roush, R. (2001). Evidence for direct neural toxicity of a “light” oil on the peripheral nerves of Lightbrown apple moth. Pesticide Biochemistry and Physiology, 69, 153–165. https://doi.org/10.1006/pest.2000.2527

    Article  CAS  Google Scholar 

  • Tjallingii, W. F., & Hogen Esch, T. (1993). Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiological Entomology, 18, 317–328.

    Article  Google Scholar 

  • University of California. (2018). Leafhoppers and sharpshooters. How to Manage Pests. UC Pest Management Guidelines. Retrieved from http://ipm.ucanr.edu/PMG/r280301711.html

  • Vanderveken, J. (1968). Effects of mineral oils and lipids on aphid transmission of beet mosaic and beet yellows viruses. Virology, 34, 807–809.

    Article  CAS  PubMed  Google Scholar 

  • Vanderveken, J. J. (1977). Oils and other inhibitors of nonpersistent virus transmission. In K. Maramorosch (Ed.), Aphids as virus vectors (pp. 435–454). New York, NY: Academic.

    Chapter  Google Scholar 

  • Vincent, C., Hallman, G., Panneton, B., & Fleurat-Lessard, F. (2003). Management of agricultural insects with physical control methods. Annual Review of Entomology, 48(1), 261–281. https://doi.org/10.1146/annurev.ento.48.091801.112639

    Article  CAS  PubMed  Google Scholar 

  • Vuorinen, A., Gammelgård, E., Auvinen, P., Somervuo, P., Dere, S., & Valkonen, J. (2010). Factors underpinning the responsiveness and higher levels of virus resistance realised in potato genotypes carrying virus-specific R genes. Annals of Applied Biology, 157(2), 229–241.

    Article  CAS  Google Scholar 

  • Vuorinen, A., Kelloniemi, J., & Valkonen, J. P. (2011). Why do viruses need phloem for systemic invasion of plants? Plant Science, 181(4), 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K., Zhang, M., Huang, Y., Yang, Z., Su, S., & Chen, M. (2018). Characterisation of imidacloprid resistance in the bird cherry-oat aphid, Rhopalosiphum padi, a serious pest on wheat crops. Pest Management Science, 74(6), 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., & Pirone, T. (1996). Mineral oil interferes with retention of tobacco etch potyvirus in the stylets of Myzus persicae. Phytopathology (USA), 86, 820.

    Article  Google Scholar 

  • Wigglesworth, V. B. (1941). Oils aiding loss of water from the cuticle. Nature, 147, 116.

    Article  CAS  Google Scholar 

  • Wojdyła, A. T. (2002). Oils activity in the control of rose powdery mildew. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen), 67(2), 369–376.

    Google Scholar 

  • Wróbel, S. (2012). Comparison of mineral oil and rapeseed oil used for the protection of seed potatoes against PVY and PVM infections. Potato Research, 55(1), 83–96. https://doi.org/10.1007/s11540-012-9210-0

    Article  CAS  Google Scholar 

  • Wróbel, S. (2014). Efficacy of mineral oil-insecticide mixtures for protection of potato tubers against PVY and PVM. American Journal of Potato Research, 91(6), 706–713. https://doi.org/10.1007/s12230-014-9403-y

    Article  CAS  Google Scholar 

  • Young, P. A. (1936). Distribution and effect of petroleum oils and kerosenes in potato, cucumber, turnip, barley, and onion. Journal of Agricultural Research, 51, 925–934.

    Google Scholar 

  • Young, P. A. (1941). Physiological and physical effects of spray oils on deciduous trees. Journal of Economic Entomology, 34, 838–844.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Giordanengo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Crown

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giordanengo, P., Boquel, S., Saguez, J., Vincent, C. (2019). Mineral and Plant Oils as Management Tools to Control Insect Vectors of Phytoplasmas. In: Olivier, C., Dumonceaux, T., Pérez-López, E. (eds) Sustainable Management of Phytoplasma Diseases in Crops Grown in the Tropical Belt. Sustainability in Plant and Crop Protection, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-29650-6_6

Download citation

Publish with us

Policies and ethics