Skip to main content

Plant Water Relations

  • Chapter
  • First Online:
Plant Physiological Ecology

Abstract

Although water is the most abundant molecule on the Earth’s surface, the availability of water is the factor that most strongly restricts terrestrial plant production on a global scale. Low water availability limits the productivity of many natural ecosystems at different time scales (Fig. 5.1). In addition, losses in crop yield due to water stress exceed losses due to all other biotic and environmental factors combined (Boyer 1985). Water availability is also a major determinant of plant and biome distribution. Regions where rainfall is abundant and fairly evenly distributed over the growing season, such as in the wet tropics, have lush vegetation. Where seasonal droughts are frequent and severe, forests are replaced by grasslands or savannas, as in the Asian steppes, North American prairies and tropical savannas (Hirota et al. 2011). Further decrease in rainfall results in semideserts, with scattered shrubs, and finally deserts. Even the effects of temperature are partly exerted through water relations, because rates of evaporation and transpiration are correlated with temperature. Thus, if we want to explain natural patterns of productivity or to increase crop productivity, it is crucial that we understand the controls over plant water relations and the consequences for plant growth of an inadequate water supply. Understanding plant water relations is also important to improve our ability to predict the effects of more frequent extreme climatic events such as droughts and floods on the future distribution and functioning of natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahl LI, Mravec J, Jørgensen B, Rudall PJ, Rønsted N, Grace OM. 2019. Polysaccharide composition of folded cell walls in drought-stressed succulent Aloe species. Plant Cell Environ 42: 2458–2471.

    Google Scholar 

  • Alamillo JM, Bartels D. 1996. Light and stage of development influence the expression of desiccation-induced genes in the resurrection plant Craterostigma plantagineum. Plant Cell Environ 19: 300–310.

    Article  CAS  Google Scholar 

  • Alder NN, Sperry JS, Pockman WT. 1996. Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia 105: 293–301.

    Article  CAS  PubMed  Google Scholar 

  • Alder NN, Pockman WT, Sperry JS, Nuismer S. 1997. Use of centrifugal force in the study of xylem cavitation. J Exp Bot 48: 665-674.

    Article  CAS  Google Scholar 

  • Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S. 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci USA 113: 5024–5029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderegg WRL, Wolf A, Arango-Velez A, Choat B, Chmura DJ, Jansen S, Kolb T, Li S, Meinzer FC, Pita P, Resco de Dios V, Sperry JS, Wolfe BT, Pacala S. 2018. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol Lett 21: 968–977.

    Article  PubMed  Google Scholar 

  • Andersen TG, Naseer S, Ursache R, Wybouw B, Smet W, De Rybel B, Vermeer JEM, Geldner N. 2018. Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells. Nature 555: 529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appezzato-da-Glória B, Cury G, Soares MKM, Rocha R, Hayashi AH. 2008. Underground systems of Asteraceae species from the Brazilian Cerrado. J Torrey Bot Soc 135: 103–113.

    Article  Google Scholar 

  • Arber A. 1923. Leaves of the Gramineae. Bot Gaz 76: 374–388.

    Article  Google Scholar 

  • Assmann SM. 1999. The cellular basis of guard cell sensing of rising CO2. Plant Cell Environ 22: 629–637.

    Article  CAS  Google Scholar 

  • Assmann SM, Shimazaki K-i. 1999. The multisensory guard cell. Stomatal responses to blue light and abscisic acid. Plant Physiol 119: 809–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assmann SM, Snyder JA, Lee Y-RJ. 2000. ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant Cell Environ 23: 387–395.

    Article  CAS  Google Scholar 

  • Atkinson RRL, Mockford EJ, Bennett C, Christin P-A, Spriggs EL, Freckleton RP, Thompson K, Rees M, Osborne CP. 2016. C4 photosynthesis boosts growth by altering physiology, allocation and size. Nat Plants: 16038.

    Google Scholar 

  • Baas P 1986. Ecological patterns in xylem anatomy. In: Givnish TJ ed. On the Economy of Plant Form and Function. Cambridge Cambridge University Press, 327–352.

    Google Scholar 

  • Bartels D, Salamini F. 2001. Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study f drought tolerance at the molecular level. Plant Physiol 127: 1346–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels D, Sunkar R. 2005. Drought and salt tolerance in plants. Crit Rev Plant Sci 24: 23–58.

    Article  CAS  Google Scholar 

  • Bartlett MK, Scoffoni C, Sack L. 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 15: 393–405.

    Article  PubMed  Google Scholar 

  • Beal WJ. 1886. The bulliform or hygroscopic cells of grasses and sedges compared. Bot Gaz 11: 321–326.

    Article  Google Scholar 

  • Berry ZC, Emery NC, Gotsch SG, Goldsmith GR. 2019. Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant Cell Environ 42: 410–423.

    Article  CAS  PubMed  Google Scholar 

  • Binks O, Meir P, Rowland L, da Costa ACL, Vasconcelos SS, de Oliveira AAR, Ferreira L, Christoffersen B, Nardini A, Mencuccini M. 2016. Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought. New Phytol 211: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittencourt PRL, Pereira L, Oliveira RS. 2016. On xylem hydraulic efficiencies, wood space-use and the safety–efficiency tradeoff. New Phytol 211: 1152–1155.

    Article  PubMed  Google Scholar 

  • Blatt MR. 2000. Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Develop Biol 16: 221–241.

    Article  CAS  Google Scholar 

  • Blatt MR, Grabov A. 1997. Signalling gates in abscisic acid-mediated control of guard cell ion channels. Physiol Plant 100: 481–490.

    Article  CAS  Google Scholar 

  • Bleby TM, Burgess SSO, Adams MA. 2004. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct Plant Biol 31: 645–658

    Article  PubMed  Google Scholar 

  • Boanares D, Ferreira BG, Kozovits AR, Sousa HC, Isaias RMS, França MGC. 2018. Pectin and cellulose cell wall composition enables different strategies to leaf water uptake in plants from tropical fog mountain. Plant Physiol Bochem 122: 57–64.

    Article  CAS  Google Scholar 

  • Böhm J. 1893. Capillarität und Saftsteigen. Ber Dtsch Bot Ges 11: 203–212.

    Google Scholar 

  • Borchert R. 1994. Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75: 1437–1449.

    Article  Google Scholar 

  • Boutton TW, Archer SR, Midwood AJ. 1999. Stable isotopes in ecosystem science: structure, function and dynamics of a subtropical savanna. Rap Comm Mass Spectrom 13: 1263–1277.

    Article  CAS  Google Scholar 

  • Boyer JS. 1985. Water transport. Annu Rev Plant Physiol 36: 473–516.

    Article  Google Scholar 

  • Bray EA. 1993. Responses to water deficit. Plant Physiol 103: 1035–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray EA. 2004. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55: 2331–2341.

    Article  CAS  PubMed  Google Scholar 

  • Bréda N, Granier A, Barataud F, Moyne C. 1995. Soil water dynamics in an oak stand. Plant Soil 172: 17–27.

    Article  Google Scholar 

  • Breshears DD, McDowell NG, Goddard KL, Dayem KE, Martens SN, Meyer CW, Brown KM. 2008. Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89: 41–47.

    Article  PubMed  Google Scholar 

  • Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA. 2010. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol 154: 1088–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brum M, Teodoro GS, Abrahão A, Oliveira RS. 2017. Coordination of rooting depth and leaf hydraulic traits defines drought-related strategies in the campos rupestres, a tropical montane biodiversity hotspot. Plant Soil 420: 467–480.

    Article  CAS  Google Scholar 

  • Brum M, Vadeboncoeur MA, Ivanov V, Asbjornsen H, Saleska S, Alves LF, Penha D, Dias JD, Aragão LEOC, Barros F, Bittencourt P, Pereira L, Oliveira RS. 2019. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J Ecol 107: 318–333.

    Article  Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM. 2001. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants†. Tree Physiol 21: 589–598.

    Article  CAS  PubMed  Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Ong CK. 1998. The redistribution of soil water by tree root systems. Oecologia 115: 306–311.

    Article  PubMed  Google Scholar 

  • Burgess SSO, Bleby TM. 2006. Redistribution of soil water by lateral roots mediated by stem tissues. J Exp Bot 57: 3283–3291.

    Article  CAS  PubMed  Google Scholar 

  • Burgess SSO, Dawson TE. 2004. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ 27: 1023–1034.

    Article  Google Scholar 

  • Burkhardt J, Basi S, Pariyar S, Hunsche M. 2012. Stomatal penetration by aqueous solutions – an update involving leaf surface particles. New Phytol 196: 774–787.

    Article  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Skelton RP, McAdam SAM, Bienaimé D, Lucani CJ, Marmottant P. 2016. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol 209: 1403-1409.

    Article  PubMed  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze E-D. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 583–595.

    Article  CAS  PubMed  Google Scholar 

  • Canny MJ. 1997. Vessel contents during transpiration – embolisms and refilling. Am J Bot 84: 1223.

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI, Eapen D, Campos ME. 2013. Root hydrotropism: an update. Am J Bot 100: 14–24.

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Tyerman SD. 2014. Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164: 1600–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenu C, Cosentino D 2011. Microbial regulation of soil structural dynamics. In: Ritz K, Young I eds. The Architecture and Biology of Soils: Life in Inner Space. Wallingford, Oxfordshire, UK: CABI, 37–70.

    Chapter  Google Scholar 

  • Chiariello NR, Field CB, Mooney HA. 1987. Midday wilting in a tropical pioneer tree. Funct Ecol 1: 3–11.

    Article  Google Scholar 

  • Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. 2018. Triggers of tree mortality under drought. Nature 558: 531–539.

    Article  CAS  PubMed  Google Scholar 

  • Choat B, Cobb AR, Jansen S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177: 608–626.

    Article  PubMed  Google Scholar 

  • Choat B, Drayton WM, Brodersen C, Matthews M, Shackel KA, Wada H, McElrone A. 2010. Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species. Plant, Cell and Environment 33: 1502–1512.

    PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE. 2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752–755.

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Cruiziat P, Tyree MT. 1992. Use of positive pressures to establish vulnerability curves. Futher support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiol 100: 205-209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochard H, Lemoine D, Dreyer E. 1999. The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L. Plant Cell Environ 22: 101–108.

    Article  Google Scholar 

  • Colombi T, Kirchgessner N, Walter A, Keller T. 2017. Root tip shape governs root elongation rate under increased soil strength. Plant Physiol 174: 2289–2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comstock JP, Ehleringer JR. 1992. Correlating genetic variation in carbon isotopic composition with complex climatic gradients. Proc Natl Acad Sci USA 89: 7747–7751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia MJ, Pereira JS, Chaves MM, Rodrigues ML, Pacheo CA. 1995. ABA xylem concentrations determine maximum daily leaf conductance of field-grown Vitis vinifera L. plants. Plant Cell Environ 18: 511–521.

    Article  CAS  Google Scholar 

  • Cowan I 1986. Economics of carbon fixation in higher plants. In: Givnish TJ ed. On the Economy of Plant Form and Function. Cambridge: Cambridge University Press, 133–170.

    Google Scholar 

  • Cowan IR 1977. Water use in higher plants. In: McIntyre AK ed. Water Planets, Plants and People. Canberra: Australian Academy of Science, 71–107.

    Google Scholar 

  • Crews LJ, McCully ME, Canny MJ, Huang CX, Ling LEC. 1998. Xylem feeding by spittlebug nymphs: some observations by optical and cryo-scanning electron microscopy. Am J Bot 85: 449–460.

    Article  CAS  PubMed  Google Scholar 

  • Dace H, Sherwin HW, Illing N, Farrant JM. 1998. Use of metabolic inhibitors to elucidate mechanisms of recovery from desiccation stress in the resurrection plant Xerophyta humilis. Plant Growth Regul 24: 171–177.

    Article  CAS  Google Scholar 

  • Darwin CR. 1880. The Power of Movement in Plants. London: John Murray.

    Google Scholar 

  • Darwin F. 1898. Observations on stomata. Phil Trans R Soc Lond B 190: 531–621.

    Article  Google Scholar 

  • Davies WJ, Tardieu F, Trejo CL. 1994. How do chemical signals work in plants that grow in drying soil? Plant Physiol 104: 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson TE. 1993. Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95: 565–574.

    Article  PubMed  Google Scholar 

  • Dawson TE, Goldsmith GR. 2018. The value of wet leaves. New Phytol 0.

    Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. 2002. Stable isotopes in plant ecology. Annu Rev Ecol Syst 33: 507–559.

    Article  Google Scholar 

  • Dixon HH, Joly J. 1894. On the ascent of sap. Ann Bot 8: 468–470.

    Article  Google Scholar 

  • Dodd IC. 2005. Root-to-shoot signalling: assessing the roles of “up” in the up and down world of long-distance signalling in planta. Plant Soil 274: 251–270.

    Article  CAS  Google Scholar 

  • Doerr SH, Shakesby RA, Walsh RPD. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Sci Rev 51: 33–65.

    Article  Google Scholar 

  • Eamus D, Shanahan ST. 2002. A rate equation model of stomatal responses to vapour pressure deficit and drought. BMC Ecology 2: 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehleringer JR, Cooper TA. 1988. Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76: 562–566.

    Article  PubMed  Google Scholar 

  • Ehleringer JR, Phillips SL, Schuster WSF, Sandquist DR. 1991. Differential utilization of summer rains by desert plants. Oecologia 88: 430–434.

    Article  PubMed  Google Scholar 

  • Eller CB, Lima AL, Oliveira RS. 2013. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol 199: 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Eller CB, Lima AL, Oliveira RS. 2016. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol: n/a-n/a.

    Google Scholar 

  • Eller CB, Rowland L, Oliveira RS, Bittencourt PRL, Barros FV, da Costa ACL, Meir P, Friend AD, Mencuccini M, Sitch S, Cox P. 2018. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Phil Trans R Soc Lond B 373.

    Article  CAS  Google Scholar 

  • Enns LC, McCully ME, Canny MJ. 1998. Solute concentrations in xylem sap along vessels of maize primary roots at high root pressure. J Exp Bot 49: 1539–1544.

    Article  CAS  Google Scholar 

  • Enstone DE, Peterson CA, Ma F. 2003. Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21: 335–351.

    Article  CAS  Google Scholar 

  • Ewers F, Fisher J. 1991. Why vines have narrow stems: histological trends in Bauhinia (Fabaceae). Oecologia 88: 233–237.

    Article  PubMed  Google Scholar 

  • Ewers FW, Fisher JB, Chiu S-T. 1990. A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia 84: 544–552.

    Article  PubMed  Google Scholar 

  • Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero-Casal C. 2017. Hydrologic regulation of plant rooting depth. Proc Natl Acad Sci USA 114: 10572–10577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farquhar GD, Barbour MM, Henry BK 1998. Interpretation of oxygen isotope composition of leaf materia. In: Griffiths H ed. Stable Isotopes. Milford Park, Oxfordshire: Bios Scientific Publishers, 27–62.

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90.

    Article  CAS  PubMed  Google Scholar 

  • Fernández V, Sancho-Knapik D, Guzmán P, Peguero-Pina JJ, Gil L, Karabourniotis G, Khayet M, Fasseas C, Heredia-Guerrero JA, Heredia A, Gil-Pelegrín E. 2014. Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age. Plant Physiol 166: 168–180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franks PJ, Cowan IR, Farquhar GD. 1997. The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ 20: 142–145.

    Article  Google Scholar 

  • Franks PJ, Cowan IR, Tyerman SD, Cleary AL, Lloyd J, Farquhar GD. 1995. Guard cell pressure/aperture characteristics measured with the pressure probe. Plant Cell Environ 18: 795–800.

    Article  Google Scholar 

  • Franks PJ, Farquhar GD. 2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143: 78–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu QA, Ehleringer JR. 1989. Heliotropic leaf movements in common beans controlled by air temperature. Plant Physiol 91: 1162–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs EE, Livingston NJ. 1996. Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and alder [Alnus rubra (Bong)] seedlings. Plant Cell Environ 19: 1091–1098.

    Article  Google Scholar 

  • Gaff DF 1981. The biology of resurrection plants. In: Pate JS, McComb AJ eds. The Biology of Australian Plants. Nedlands: University of Western Australia Press, 115–146.

    Google Scholar 

  • Gartner BL 1995. Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: Gartner BL ed. Plant Stems. Sand Diego: Academic Press, 125–149.

    Chapter  Google Scholar 

  • Gessler A, Peuke AD, Keitel C, Farquhar GD. 2007. Oxygen isotope enrichment of organic matter in Ricinus communis during the diel course and as affected by assimilate transport. New Phytol 174: 600–613.

    Article  CAS  PubMed  Google Scholar 

  • Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao K-F, Cochard H, Delzon S, Domec J-C, Fan Z-X, Feild TS, Jacobsen AL, Johnson DM, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, McCulloh KA, Mencuccini M, Mitchell PJ, Morris H, Nardini A, Pittermann J, Plavcová L, Schreiber SG, Sperry JS, Wright IJ, Zanne AE. 2015. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol: n/a-n/a.

    Google Scholar 

  • Goldsmith GR. 2013. Changing directions: the atmosphere–plant–soil continuum. New Phytol 199: 4–6.

    Article  PubMed  Google Scholar 

  • Gollan T, Schurr U, Schulze E-D. 1992. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap. Plant Cell Environ 15: 551–559.

    Article  CAS  Google Scholar 

  • Green S, Clothier B, Jardine B. 2003. Theory and practical application of heat pulse to measure sap flow. Agron J 95: 1371–1379.

    Article  Google Scholar 

  • Grieve BJ, Hellmuth EO. 1970. Eco-physiology of Western Australian plants. Oecologia Plantarum 5: 33–67.

    Google Scholar 

  • Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG. 2005. Antifreeze proteins modify the freezing process in planta. Plant Physiol 138: 330–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hales S. 1727. Vegetable Staticks. London: W. & J. Innys ant T. Woodward.

    Google Scholar 

  • Hall AE, Schulze E-D. 1980. Stomatal response to environment and a possible interrelation between stomatal effects on transpiration and CO2 assimilation. Plant Cell Environ 3: 467–474.

    Google Scholar 

  • Harten JB, Eickmeier WG. 1986. Enzyme dynamics of the resurrection plant Selaginella lepidophylla (Hook. & Grev.) spring during rehydration. Plant Physiol 82: 61–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartung W, Sauter A, Turner NC, Fillery I, Heilmeier H. 1996. Abscisic acid in soils: what is its function and which factors and mechanisms influence its concentration? Plant Soil 184: 105–110.

    Article  CAS  Google Scholar 

  • Hassiotou F, Evans JR, Ludwig M, Veneklaas EJ. 2009. Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant Cell Environ 32: 1596–1611.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins H-J, Hettasch H, West AG, Cramer MD. 2009. Hydraulic redistribution by Protea Sylvia (Proteaceae) facilitates soil water replenishment and water acquisition by an understorey grass and shrub. Funct Plant Biol 36: 752–760.

    Article  PubMed  Google Scholar 

  • Hedrich R, Schroeder JI. 1989. The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Biol 40: 539–569.

    Article  Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M. 2011. Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science 334: 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Hochberg U, Rockwell FE, Holbrook NM, Cochard H. 2018. Iso/anisohydry: a plant-environment interaction rather than a simple hydraulic trait. Trends Plant Sci 23: 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Holbrook NM, Burns MJ, Field CB. 1995. Negative xylem pressures in plants: a test of the balancing pressure technique. Science 270: 1193–1195.

    Article  CAS  Google Scholar 

  • Holbrook NM, Putz FE. 1996. From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. Plant Cell Environ 19: 631–642.

    Article  Google Scholar 

  • Holbrook NM, Zwieniecki MA. 1999. Embolism repair and xylem tension: do we need a miracle? Plant Physiol 120: 7–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RB, Moore LA, Hoffmann WA, Pockman WT, Linder CR. 1999. Ecosystem rooting depth determined with caves and DNA. Proc Natl Acad Sci USA 96: 11387–11392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia W, Davies WJ. 2007. Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol 143: 68–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DM, Berry ZC, Baker KV, Smith DD, McCulloh KA, Domec J-C. 2018. Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. Funct Ecol 32: 894–903.

    Article  Google Scholar 

  • Kern JS. 1995. Evaluation of soil water retention models based on basic soil physical properties. Soil Sci Soc Am J 59: 1134–1141.

    Article  CAS  Google Scholar 

  • Kerstiens G. 1996. Signalling across the divide: a wider perspective of cuticular structure—function relationships. Trends Plant Sci 1: 125–129.

    Article  Google Scholar 

  • Kinoshita T, Shimazaki Ki. 1999. Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO Journal 18: 5548–5558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluge M, Ting IP. 1978. Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Körner C, Neumayer M, Pelaez Mennendez-Riedl S, Smeets-Scheel A. 1989. Functional morphology of moutain plants. Flora 182: 353–383.

    Article  Google Scholar 

  • Korolev AV, Tomos AD, Bowtell R, Farrar JF. 2000. Spatial and temporal distribution of solutes in the developing carrot taproot measured at single-cell resolution. J Exp Bot 51: 567–577.

    Article  CAS  PubMed  Google Scholar 

  • Kramer PJ. 1969. Plant & Soil Water Relationships. New York: McGraw-Hill.

    Google Scholar 

  • Lambers H, Cawthray GR, Giavalisco P, Kuo J, Laliberté E, Pearse SJ, Scheible W-R, Stitt M, Teste F, Turner BL. 2012. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use efficiency. New Phytol 196: 1098–1108.

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Colmer TD, Hassiotou F, Mitchell PM, Poot P, Shane MW, Veneklaas EJ 2014. Carbon and water relations. In: Lambers H ed. Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot. Crawley: UWA Publishing, 129–146.

    Google Scholar 

  • Lange OL, Lösch R, Schulze E-D, Kappen L. 1971. Responses of stomata to changes in humidity. Planta 100: 76–86.

    Article  CAS  PubMed  Google Scholar 

  • Laur J, Hacke UG. 2014. Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytol 203: 388–400.

    Article  CAS  PubMed  Google Scholar 

  • Lee J-E, Oliveira RS, Dawson TE, Fung I. 2005. Root functioning modifies seasonal climate. Proc Natl Acad Sci USA 102: 17576–17581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190: 709–723.

    Article  PubMed  Google Scholar 

  • Li S, Lens F, Espino S, Karimi Z, Klepsch M, Schenk HJ, Schmitt M, Schuldt B, Jansen S. 2016. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J 37: 152.

    Article  Google Scholar 

  • Lo Gullo MA, Sallea S, Piaceri EC, Rosso R. 1995. Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus corris. Plant Cell Environ 18: 661–669.

    Article  Google Scholar 

  • Lo Gullo MA, Salleo S. 1988. Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytol 108: 267–276.

    Article  PubMed  Google Scholar 

  • Longstreth DJ, Bolaños JA, Goddard RH. 1985. Photosynthetic rate and mesophyll surface area in expanding leaves of Alternanthera philoxeroides grown at two light levels. Am J Bot 72: 14–19.

    Article  Google Scholar 

  • Loveless AR. 1961. A Nutritional Interpretation of Sclerophylly Based on Differences in the Chemical Composition of Sclerophyllous and Mesophytic Leaves. Ann Bot 25: 168–184.

    Article  CAS  Google Scholar 

  • Loveless AR. 1962. Further evidence to support a nutritional interpretation of sclerophylly. Ann Bot 26: 551–561.

    Article  Google Scholar 

  • Magnani F, Borghetti M. 1995. Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in Fagus sylvatica. Plant Cell Environ 18: 689–696.

    Article  Google Scholar 

  • Mansfield TA, McAinsh MR 1995. Hormones as regulators of water balance. In: P.J. D ed. Plant Hormones. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Margolis H, Oren R, Whitehead D, Kaufmann MR 1995. Leaf area dynamics of conifer forests. In: Smith WK, Hinckley TM eds. Ecophysiology of Coniferous Forests. San Diego: Academic Press, 181–223.

    Chapter  Google Scholar 

  • Marshall DC. 1958. Measurement of sap flow in conifers by heat transport. Plant Physiol 33: 385–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall JD, Zhang J. 1994. Carbon isotope discrimination and water-use efficiency in native plants of the North-Central Rockies. Ecology 75: 1887–1895.

    Article  Google Scholar 

  • Martin, C.E., von Willert aDJ. 2000. Leaf Epidermal Hydathodes and the Ecophysiological Consequences of Foliar Water Uptake in Species of Crassula from the Namib Desert in Southern Africa. Plant Biol: 229–242.

    Article  Google Scholar 

  • Martínez-Vilalta J, Garcia-Forner N. 2017. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ 40: 962–976.

    Article  PubMed  CAS  Google Scholar 

  • Mason Earles J, Sperling O, Silva LCR, McElrone AJ, Brodersen CR, North MP, Zwieniecki MA. 2016. Bark water uptake promotes localized hydraulic recovery in coastal redwood crown. Plant Cell Environ 39: 320–328.

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Rodrigues O. 2016. Aquaporins and plant transpiration. Plant Cell Environ 39: 2580–2587.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell C, Griffiths H, Borland AM, Broadmeadow MSJ, McDavid CR. 1992. Photoinhibitory responses of the epiphytic bromeliad Guzmania monostachia during the dry season in Trinidad maintain photochemical integrity under adverse conditions. Plant Cell Environ 15: 37–47.

    Article  Google Scholar 

  • Mayr S, Schmid P, Laur J, Rosner S, Charra-Vaskou K, Dämon B, Hacke UG. 2014. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiol 164: 1731–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAdam SAM, Sussmilch FC, Brodribb TJ. 2016. Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms. Plant Cell Environ 39: 485–491.

    Article  CAS  PubMed  Google Scholar 

  • McCully ME, Canny MJ. 1988. Pathways and processes of water and nutrient movement in roots. Plant Soil 111: 159–170.

    Article  CAS  Google Scholar 

  • McElrone AJ, Choat B, Gambetta GA, Brodersen CR. 2013. Water uptake and transport in vascular plants. Nature Education Knowledge 4.

    Google Scholar 

  • Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, CROUS KY, De Angelis P, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Change Biol 17: 2134–2144.

    Article  Google Scholar 

  • Meidner H 1987. Three hundred years of research into stomata. In: Zeiger E, Farquhar GD, Cowan IR eds. Stomatal Function. Stanford: Stanford University Press, 7–27.

    Google Scholar 

  • Midwood AJ, Boutton TW, Archer SR, Watts SE. 1998. Water use by woody plants on contrasting soils in a savanna parkland: assessment with δ2H and δ18O. Plant Soil 205: 13–24.

    Article  CAS  Google Scholar 

  • Milburn JA. 1979. Water Flow in Plants. London: Longman.

    Google Scholar 

  • Mitchell PJ, Veneklaas EJ, Lambers H, Burgess SSO. 2008. Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. Plant Cell Environ 31: 1791–1802.

    Article  PubMed  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root : shoot ratios in terrestrial biomes. Glob Change Biol 12: 84–96.

    Article  Google Scholar 

  • Mooney HA, Dunn EL. 1970. Convergent evolution of mediterranean-climate sclerophyll shrubs. Evolution 24: 292–303.

    Article  PubMed  Google Scholar 

  • Mooney HA, Ehleringer J, Berry JA. 1976. High photosynthetic capacity of a winter annual in Death Valley. Science 194: 322–324.

    Article  CAS  PubMed  Google Scholar 

  • Morison JIL 1987. Intercellular CO2 concentration and stomatal response to CO2. In: Zeiger E, Farquhar GD, Cowan IR eds. Stomatal Function. Stanford: Stanford University Press, 229–251.

    Google Scholar 

  • Mott KA. 1988. Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol 86: 200–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott KA, Parkhurst DF. 1991. Stomatal responses to humidity in air and helox. Plant Cell Environ 14: 509–515.

    Article  Google Scholar 

  • Müller J, Sprenger N, Bortlik K, Boller T, Wiemken A. 1997. Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiol Plant 100: 153–158.

    Article  Google Scholar 

  • Munns R, Gilliham M. 2015. Salinity tolerance of crops – what is the cost? New Phytol 208: 668–673.

    Article  CAS  PubMed  Google Scholar 

  • Nadezhdina N, Čermák J. 2003. Instrumental methods for studies of structure and function of root systems of large trees. J Exp Bot 54: 1511–1521.

    Article  CAS  PubMed  Google Scholar 

  • Nadezhdina N, David TS, David JS, Ferreira MI, Dohnal M, Tesař M, Gartner K, Leitgeb E, Nadezhdin V, Cermak J, Jimenez MS, Morales D. 2010. Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology 3: 431–444.

    Article  Google Scholar 

  • Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372: 666–669.

    Article  CAS  Google Scholar 

  • Ngugi MR, Doley D, Hunt MA, Dart P, Ryan P. 2003. Leaf water relations of Eucalyptus cloeziana and Eucalyptus argophloia in response to water deficit. Tree Physiol 23: 335–343.

    Article  PubMed  Google Scholar 

  • Niklas K, Paolillo D. 1998. Preferential states of longitudinal tension in the outer tissues of Taraxcum officinale (Asteraceae) peduncles. Am J Bot 85: 1068.

    Article  CAS  PubMed  Google Scholar 

  • Nilson SE, Assmann SM. 2007. The control of transpiration. Insights from Arabidopsis. Plant Physiol 143: 19–27.

    Google Scholar 

  • Nobel PS. 2006. Parenchyma-chlorenchyma water movement during drought for the hemiepiphytic cactus Hylocereus undatus. Ann Bot 97: 469–474.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nobel PS. 2009. Physicochemical and Environmental Plant Physiology, 4th edn. Oxford: Academic Press.

    Google Scholar 

  • Nobel PS, Schulte PJ, North GB. 1990. Water influx characteristics and hydraulic conductivity for roots of Agave deserti Engelm. J Exp Bot 41: 409–415.

    Article  Google Scholar 

  • Nobel PS, Zaragoza LJ, Smith WK. 1975. Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus Henckel. Plant Physiol 55: 1067–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North GB, Nobel PS. 1997. Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths. Plant Soil 191: 249–258.

    Article  CAS  Google Scholar 

  • Oliveira RS, Costa FRC, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Barros FdV, Cordoba EC, Fagundes MV, Garcia S, Guimaraes Zilza TM, Hertel M, Schietti J, Rodrigues-Souza J, Poorter L. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol 221: 1457–1465.

    Article  PubMed  Google Scholar 

  • Oliveira RS, Dawson TE, Burgess SSO. 2005. Evidence for direct water absorption by the shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of central Brazil. J Trop Ecol 21: 585–588.

    Article  Google Scholar 

  • Oosterhuis DM, Walker S, Eastham J. 1985. Soybean leaflet movements as an indicator of crop water stress. Crop Sci 25: 1101–1106.

    Article  Google Scholar 

  • Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schafer KVR. 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22: 1515–1526.

    Article  Google Scholar 

  • Osmond CB, Winter K, Ziegler H 1982. Functional significance of different pathways of CO 2 fixation in photosynthesis. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Physiological Plant Ecology. Berlin: Springer, 479–547.

    Google Scholar 

  • Outlaw WH. 2003. Integration of cellular and physiological functions of guard cells. Crit Rev Plant Sci 22: 503–529.

    Article  Google Scholar 

  • Passioura J. 1988. Root signals control leaf expansion in wheat seedlings growing in drying soil. Funct Plant Biol 15: 687–693.

    Article  Google Scholar 

  • Passioura J. 1991. Soil structure and plant growth. Soil Res 29: 717–728.

    Article  Google Scholar 

  • Pate JS, Jeschke WD, Aylward MJ. 1995. Hydraulic architecture and xylem structure of the dimorphic root systems of South-West Australian species of Proteaceae. J Exp Bot 46: 907–915.

    Article  CAS  Google Scholar 

  • Pedersen O, Sand-Jensen K. 1997. Transpiration does not control growth and nutrient supply in the amphibious plant Mentha aquatica. Plant Cell Environ 20: 117–123.

    Article  CAS  Google Scholar 

  • Pelah D, Wang W, Altman A, Shoseyov O, Bartels D. 1997. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plant 99: 153–159.

    Article  CAS  Google Scholar 

  • Pereira L, Bittencourt PRL, Oliveira RS, Junior MBM, Barros FV, Ribeiro RV, Mazzafera P. 2016. Plant pneumatics: stem air flow is related to embolism – new perspectives on methods in plant hydraulics. New Phytol 211: 357-370.

    Article  PubMed  Google Scholar 

  • Peterson CA, Enstone DE. 1996. Functions of passage cells in the endodermis and exodermis of roots. Physiol Plant 97: 592–598.

    Article  CAS  Google Scholar 

  • Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA. 2016. Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecol Lett 19: 240–248.

    Article  PubMed  Google Scholar 

  • Pfautsch S, Renard J, Tjoelker MG, Salih A. 2015. Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma. Plant Physiol 167: 963–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pockman WT, Sperry JS, O’leary JW. 1995. Sustained and significant negative water pressure in xylem. Nature 378: 715–716.

    Article  CAS  Google Scholar 

  • Porembski S, Barthlott W. 2000. Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecol 151: 19–28.

    Article  Google Scholar 

  • Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ. 2014. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol Lett 17: 82–91.

    Article  PubMed  Google Scholar 

  • Pritchard J. 1994. The control of cell expansion in roots. New Phytol 127: 3–26.

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, Schreiber L, Franke R. 2011. Suberin research in the genomics era—New interest for an old polymer. Plant Sci 180: 399–413.

    Article  CAS  PubMed  Google Scholar 

  • Read DB, Bengough AG, Gregory PJ, Crawford JW, Robinson D, Scrimgeour CM, Young IM, Zhang K, Zhang X. 2003. Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157: 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Reich PB. 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102: 275–301.

    Article  Google Scholar 

  • Reiser V, Raitt DC, Saito H. 2003. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161: 1035–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rempe DM, Dietrich WE. 2018. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proceedings of the National Academy of Sciences 115: 2664–2669.

    Article  CAS  Google Scholar 

  • Richards JH, Caldwell MM. 1987. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73: 486–489.

    Article  CAS  PubMed  Google Scholar 

  • Roberts F, Carbon B. 1972. Water repellence in sandy soils of south-western Australia. II. Some chemical characteristics of the hydrophobic skins. Soil Res 10: 35–42.

    Article  CAS  Google Scholar 

  • Robichaux RH. 1984. Variation in the tissue water relations of two sympatric Hawaiian Dubautia species and their natural hybrid. Oecologia 65: 75–81.

    Article  PubMed  Google Scholar 

  • Roden JS, Lin G, Ehleringer JR. 2000. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64: 21–35.

    Article  CAS  Google Scholar 

  • Rodriguez-Dominguez CM, Buckley TN, Egea G, de Cires A, Hernandez-Santana V, Martorell S, Diaz-Espejo A. 2016. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. Plant Cell Environ 39: 2014–2026.

    Article  CAS  PubMed  Google Scholar 

  • Roth-Nebelsick A, Hassiotou F, Veneklaas EJ. 2009. Stomatal crypts have small effects on transpiration: a numerical model analysis. Plant Physiol 151: 2018–2027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rundel PW 1995. Adaptive significance of some morphological and physiological characteristics in Mediterranean plants: facts and fallacies. In: Roy J, Aronson J, di Castri F eds. Time Scales of Biological Responses to Water Constraints The case of Mediterranean Biota Amsterdam: SPB Academic Publishing, 119–139.

    Google Scholar 

  • Satter RL, Galston AW. 1981. Mechanisms of control of leaf movements. Annu Rev Plant Physiol 32: 83–110.

    Article  CAS  Google Scholar 

  • Schmalstig JG. 1997. Light perception for sun-tracking is on the lamina in Crotalaria pallida (Fabaceae). Am J Bot 84: 308–314.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JE, Kaiser WM. 1987. Response of the succulent leaves of Peperomia magnoliaefolia to dehydration: water relations and solute movement in chlorenchyma and hydrenchyma. Plant Physiol 83: 190–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholander PF, Bradstreet ED, Hemmingsen EA. 1965. Sap pressure in vascular plants. Science 148: 339–346.

    Article  CAS  PubMed  Google Scholar 

  • Schulte PJ, Hinckley TM. 1985. A comparison of pressure-volume curve data analysis techniques. J Exp Bot 36: 1590–1602.

    Article  Google Scholar 

  • Schulze E-D 1991. Water and nutrient interactions with plant water stress. In: Mooney HA, Winner WE, Pell EJ eds. Response of Plants to Multiple Stresses. San Diego: Academic Press, 89–101.

    Chapter  Google Scholar 

  • Schulze E-D, Caldwell MM, Canadell J, Mooney HA, Jackson RB, Parson D, Scholes R, Sala OE, Trimborn P. 1998. Downward flux of water through roots (i.e. inverse hydraulic lift) in dry Kalahari sands. Oecologia 115: 460–462.

    Article  PubMed  Google Scholar 

  • Schulze E-D, Hall AE 1982. Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Physiological Plant Ecology II: Water Relations and Carbon Assimilation. Berlin, Heidelberg: Springer Berlin Heidelberg, 181–230.

    Chapter  Google Scholar 

  • Schulze E-D, Lange OL, Ziegler H, Gebauer G. 1991. Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88: 457–462.

    Article  PubMed  Google Scholar 

  • Schurr U, Gollan T, Schulze E-D. 1992. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant Cell Environ 15: 561–567.

    Article  CAS  Google Scholar 

  • Schuur EAG. 2003. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84: 1165–1170.

    Article  Google Scholar 

  • Schwartz A, Gilboa S, Koller D. 1987. Photonastic control of leaflet orientation in Melilotus indicus (Fabaceae). Plant Physiol 84: 318–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwinning S. 2010. The ecohydrology of roots in rocks. Ecohydrology 3: 238–245.

    Google Scholar 

  • Shah N, Smirnoff N, Stewart GR. 1987. Photosynthesis and stomatal characteristics of Striga hermonthica in relation to its parasitic habit. Physiol Plant 69: 699–703.

    Article  Google Scholar 

  • Shane MW, McCully ME, Canny MJ, Pate JS, Huang C, Ngo H, Lambers H. 2010. Seasonal water relations of Lyginia barbata (Southern rush) in relation to root xylem development and summer dormancy of root apices. New Phytol 185: 1025–1037.

    Article  PubMed  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ. 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113: 1177–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherwin HW, Farrant JM. 1996. Differences in rehydration of three desiccation-tolerant angiosperm species. Ann Bot 78: 703–710.

    Article  Google Scholar 

  • Sherwin HW, Farrant JM. 1998. Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. Plant Growth Regul 24: 203–210.

    Article  CAS  Google Scholar 

  • Sherwin HW, Pammenter NW, February E, Vander Willigen C, Farrant JM. 1998. Xylem hydraulic characteristics, water relations and wood anatomy of the resurrection plant Myrothamnus flabellifolius Welw. Ann Bot 81: 567–575.

    Article  Google Scholar 

  • Shimazaki K-I, Doi M, Assmann SM, Kinoshita T. 2007. Light regulation of stomatal movement. Annu Rev Plant Biol 58: 219–247.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol 115: 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6: 410–417.

    Article  CAS  PubMed  Google Scholar 

  • Siteur K, Mao J, Nierop KGJ, Rietkerk M, Dekker SC, Eppinga MB. 2016. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. Ecosystems 19: 1210–1224.

    Article  CAS  Google Scholar 

  • Skelton RP, West AG, Dawson TE. 2015. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc Natl Acad Sci USA 112: 5744–5749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115: 433–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N, Cumbes QJ. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057–1060.

    Article  CAS  Google Scholar 

  • Smith DM, Allen SJ. 1996. Measurement of sap flow in plant stems. J Exp Bot 47: 1833–1844.

    Article  CAS  Google Scholar 

  • Sobrado MA, Medina E. 1980. General morphology, anatomical structure, and nutrient content of sclerophyllous leaves of the ‘bana’ vegetation of amazonas. Oecologia 45: 341–345.

    Article  CAS  PubMed  Google Scholar 

  • Sowell JB, McNulty SP, Schilling BK. 1996. The role of stem recharge in reducing the winter desiccation of Picea engelmannii (Pinaceae) needles at alpine timberline. Am J Bot 83: 1351–1355.

    Article  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11: 35-40.

    Article  Google Scholar 

  • Sperry JS 1995. Limitations on Stem Water Transport and Their Consequences. In: Gartner BL ed. Plant Stems. San Diego: Academic Press, 105–124.

    Chapter  Google Scholar 

  • Sperry JS, Saliendra NZ, Pockman WT, Cochard H, Cuizat P, Davis SD, Ewers FW, Tyree MT. 1996. New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant Cell Environ 19: 427–436.

    Article  Google Scholar 

  • Sperry JS, Sullivan JEM. 1992. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol 100: 605–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, Love DM. 2017. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ 40: 816–830.

    Article  CAS  PubMed  Google Scholar 

  • Sternberg L, Pinzon MC, Anderson WT, Jahren AH. 2006. Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects. Plant Cell Environ 29: 1881–1889.

    Article  CAS  PubMed  Google Scholar 

  • Stirzaker RJ, Passioura JB. 1996. The water relations of the root–soil interface. Plant Cell Environ 19: 201–208.

    Article  Google Scholar 

  • Stirzaker RJ, Passioura JB, Wilms Y. 1996. Soil structure and plant growth: impact of bulk density and biopores. Plant Soil 185: 151–162.

    Article  CAS  Google Scholar 

  • Stone EC. 1957. Dew as an ecological factor: I. A review of the literature. Ecology 38: 407–413.

    Article  Google Scholar 

  • Swanson RH, Whitfield DAW. 1981. A numerical analysis of heat pulse velocity theory. J Exp Bot 32: 221–239.

    Article  Google Scholar 

  • Takahashi H, Scott TK. 1993. Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap. Plant Cell Environ 16: 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Lafarge T, Simonneau T. 1996. Stomatal control by fed or endogenous xylem ABA in sunflower: interpretation of correlations between leaf water potential and stomatal conductance in anisohydric species. Plant Cell Environ 19: 75–84.

    Article  CAS  Google Scholar 

  • Tardieu F, Zhang J, Katerji N, Bethenod O, Palmer S, Davies WJ. 1992. Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying. Plant Cell Environ 15: 193–197.

    Article  CAS  Google Scholar 

  • Thomashow MF. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50: 571–599.

    Article  CAS  PubMed  Google Scholar 

  • Thorburn PJ, Ehleringer JR. 1995. Root water uptake of field-growing plants indicated by measurements of natural-abundance deuterium. Plant Soil 177: 225–233.

    Article  CAS  Google Scholar 

  • Tomos AD, Leigh RA. 1999. The pressure probe: A versatile tool in plant cell physiology. Annu Rev Plant Physiol Plant Mol Biol 50: 447–472.

    Article  CAS  PubMed  Google Scholar 

  • Tranquillini W 1982. Frost-drought and its ecological significance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Encyclopedia of Plant Physiology, NS. Berlin: Springer-Verlag, 379–400.

    Google Scholar 

  • Turrell FM. 1936. The area of the internal exposed surface of dicotyledon leaves. Am J Bot 23: 255–264.

    Article  Google Scholar 

  • Tyree MT, Salleo S, Nardini A, Assunta Lo Gullo M, Mosca R. 1999. Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? Plant Physiol 120: 11–22.

    Article  CAS  PubMed Central  Google Scholar 

  • Tyree MT, Sperry JS. 1989. Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol 40: 19–36.

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH. 2013. Xylem Structure and the Ascent of Sap. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Uehlein N, Kaldenhoff R. 2008. Aquaporins and plant leaf movements. Ann Bot 101: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Van den Ende W. 2013. Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci 4: 247.

    Article  CAS  PubMed  Google Scholar 

  • Van Hylckama TE. 1974. Water use by saltcedar as measured by the water budget method. US Geological Survey Papers 491-E.

    Google Scholar 

  • Van Ieperen W. 2007. Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction? Trends Plant Sci 12: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Vogelmann TC. 1984. Site of light perception and motor cells in a sun-tracking lupine (Lupinus succulentus). Physiol Plant 62: 335–340.

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H. 1995. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187: 159–219.

    Article  Google Scholar 

  • Wegner LH. 2014. Root pressure and beyond: energetically uphill water transport into xylem vessels? J Exp Bot 65: 381–393.

    Article  CAS  PubMed  Google Scholar 

  • Wegner LH. 2015. A thermodynamic analysis of the feasibility of water secretion into xylem vessels against a water potential gradient. Funct Plant Biol 42: 828–835.

    Article  PubMed  Google Scholar 

  • Wilkinson S, Corlett JE, Oger L, Davies WJ. 1998. Effects of xylem pH on transpiration from wild-type and flacca tomato leaves. A vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol 117: 703–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Davies WJ. 1997. Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol 113: 559–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski M, Davis G, Arora R. 1991. Effect of macerase, oxalic acid, and EGTA on deep supercooling and pit membrane structure of xylem parenchyma of peach. Plant Physiol 96: 1354–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf A, Anderegg WRL, Pacala SW. 2016. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc Natl Acad Sci USA 113: E7222–E7230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Cosgrove DJ. 2000. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51: 1543–1553.

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger SD, Meinzer FC, Vertessy RA. 1998. A review of whole-plant water use studies in tree. Tree Physiol 18: 499–512.

    Article  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57: 781–803.

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Tyree MT. 1992. A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant Cell Environ 15: 633–643.

    Article  Google Scholar 

  • Yoder C, Nowak R. 1999. Hydraulic lift among native plant species in the Mojave Desert. Plant Soil 215: 93–102.

    Article  CAS  Google Scholar 

  • Yu M, Xie Y, Zhang X. 2005. Quantification of intrinsic water use efficiency along a moisture gradient in northeastern China. J Environ Qual 34: 1311–1318.

    Article  CAS  PubMed  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM. 2013. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W-H, Tyerman SD. 1999. Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120: 849–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K. 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann MH. 1983. Xylem Structure and the Ascent of Sap. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Zimmermann MH, Milburn JA 1982. Transport and storage of water. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Physiological Plant Ecology II: Springer, 135–151.

    Google Scholar 

  • Zwieniecki MA, Holbrook NM. 2009. Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci 14: 530–534.

    Article  CAS  PubMed  Google Scholar 

  • Zwieniecki MA, Newton M. 1995. Roots growing in rock fissures: their morphological adaptation. Plant Soil 172: 181–187.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lambers, H., Oliveira, R.S. (2019). Plant Water Relations. In: Plant Physiological Ecology. Springer, Cham. https://doi.org/10.1007/978-3-030-29639-1_5

Download citation

Publish with us

Policies and ethics