Skip to main content

Laser in Bone Surgery

  • Chapter
  • First Online:
Lasers in Oral and Maxillofacial Surgery

Abstract

During the past half-century, laser osteotomy has been studied for a broad range of lasers, which almost covers the entire range of available laser systems in the market, from early unsuccessful experiments with CW lasers to newly developed ultrashort pulse lasers. Although a large variety of laser parameters including wavelength, pulse energy, pulse duration, and repetition rate have been investigated to find an optimum laser system as an alternative osteotomy tool, there is not a universal agreement on a specific type of laser to replace conventional mechanical saws. The only universal agreement is on the speed of cutting (ablation rate) which went to long-pulse Er:YAG and CO2 lasers. Microsecond pulse Er:YAG and CO2 lasers perform osteotomy by inducing efficient photothermal effect to the bone with the help of high absorption peak of water in the bone. However, having a speedy cut is not the only effective parameter to pave the way for transferring lasers to the operating room. Other parameters including cutting with the lowest thermal damage, ability for deep cutting, and compatibility with integrating sensors are among the other determinant parameters. Moreover, being able to be delivered through the fiber optic and as a consequence fit inside the endoscope channel could extend their application from the open surgery to minimally invasive ones. This chapter besides proving the necessary information on the physics behind the laser–bone interaction provides a short review on the history of bone surgery with laser and state-of-the-art studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence C. The evolution of surgical instruments: An illustrated history from ancient times to the twentieth century. Bull Hist Med. 2007;81(3):661–2.

    Article  Google Scholar 

  2. Eriksson AR, Albrektsson T, Albrektsson B. Heat caused by drilling cortical bone: temperature measured in vivo in patients and animals. Acta Orthop Scand. 1984;55(6):629–31.

    Article  CAS  PubMed  Google Scholar 

  3. Steiner R, Raulin C, Karsai S. Laser and ipl technology in dermatology and aesthetic medicine. Berlin Heidelberg: Springer-Verlag; 2011.

    Google Scholar 

  4. Soong HK, Malta JB. Femtosecond lasers in ophthalmology. Am J Ophthalmol. 2009;147(2):189–97.

    Article  PubMed  Google Scholar 

  5. Shapshay SM, Hybels RL, Beamis JF Jr, Bohigian RK. Endoscopic treatment of subglottic and tracheal stenosis by radial laser incision and dilation. Ann Otol Rhinol Laryngol. 1987;96(6):661–4.

    Article  CAS  PubMed  Google Scholar 

  6. Berlien H-P, Breuer H, Müller GJ, Krasner N, Okunata T, Sliney D. Applied laser medicine. New York: Springer Science & Business Media; 2012.

    Google Scholar 

  7. Stübinger S. Advances in bone surgery: the Er:Yag laser in oral surgery and implant dentistry. Clin Cosmet Investigat Dentist. 2010;2:47.

    Article  Google Scholar 

  8. Parker S. Surgical lasers and hard dental tissue. Br Dent J. 2007;202(8):445.

    Article  CAS  PubMed  Google Scholar 

  9. Jowett N, Wöllmer W, Reimer R, Zustin J, Schumacher U, Wiseman PW, Mlynarek AM, Böttcher A, Dalchow CV, Lörincz BB, et al. Bone ablation without thermal or acoustic mechanical injury via a novel picosecond infrared laser (pirl). Otolaryngol Head Neck Surg. 2014;150(3):385–93.

    Article  PubMed  Google Scholar 

  10. Rajitha Gunaratne G, Khan R, Fick D, Robertson B, Dahotre N, Ironside C. A review of the physiological and histological effects of laser osteotomy. J Med Eng Technol. 2017;41(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  11. Maiman T. Stimulated optical radiation in ruby. Nature. 1960;187(4736):493–4.

    Article  Google Scholar 

  12. Rawicz AH. Theodore harold maiman and the invention of laser. Photon Device Syst IV. 2008;7138:713802, International Society for Optics and Photonics

    Article  Google Scholar 

  13. Solon LR, Aronson R, Gould G. Physiological implications of laser beams. Science. 1961;134(3489):1506–8.

    Article  CAS  PubMed  Google Scholar 

  14. Goldman L. Effect of the laser beam on the skin, preliminary report. J Invest Derm. 1963;40:121–2.

    Article  CAS  PubMed  Google Scholar 

  15. Zweng H, Flocks M, Kapany N, Silbertrust N, Peppers N. Experimental laser photo-coagulation. Am J Ophthalmol. 1964;58(3):353–62.

    Article  CAS  PubMed  Google Scholar 

  16. Goldman L, Gray JA, Goldman J, Goldman B, Meyer R. Effect of laser beam impacts on teeth. J Am Dent Assoc. 1965;70(3):601–6.

    Article  CAS  PubMed  Google Scholar 

  17. Geusic J, Marcos H, Van Uitert L. Laser oscillations in nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl Phys Lett. 1964;4(10):182–4.

    Article  CAS  Google Scholar 

  18. Patel C. N continuous wave laser action on vibrational-rotational transitions of co2. Phys Rev A. 1964;136:1187.

    Article  CAS  Google Scholar 

  19. Horch H, McCord R, Keiditsch E. Histological and long term results following laser osteotomy. In: Laser Surgery II. Jerusalem. Israel: Academic Press; 1978. p. 318.

    Google Scholar 

  20. Horch H. Current status of laser osteotomy. Der Orthopade. 1984;13(2):125–32.

    CAS  PubMed  Google Scholar 

  21. Clayman L, Fuller T, Beckman H. Healing of continuous-wave and rapid superpulsed, carbon dioxide, laser-induced bone defects. J Oral Surg. 1978;36(12):932–7.

    CAS  PubMed  Google Scholar 

  22. Gopin BW, Cobb CM, Rapley JW, Killoy WJ. Histologic evaluation of soft tissue attachment to co 2 laser-treated root surfaces: an in viva study. Int J Periodont Restorat Dentist. 1997;17(4)

    Google Scholar 

  23. Eriksson A, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  24. Nuss RC, Fabian RL, Sarkar R, Puliafito CA. Infrared laser bone ablation. Lasers Surg Med. 1988;8(4):381–91.

    Article  CAS  PubMed  Google Scholar 

  25. Hibst R, Keller U. Experimental studies of the application of the er: Yag laser on dental hard substances: I. measurement of the ablation rate. Lasers Surg Med. 1989;9(4):338–44.

    Article  CAS  PubMed  Google Scholar 

  26. Keller U, Hibst R. Experimental studies of the application of the er: Yag laser on dental hard substances: Ii. light microscopic and sem investigations. Lasers Surg Med. 1989;9(4):345–51.

    Article  CAS  PubMed  Google Scholar 

  27. Peavy GM, Reinisch L, Payne JT, Venugopalan V. Comparison of cortical bone ablations by using infrared laser wavelengths 2.9 to 9.2 μm. Lasers Surg Med. 1999;25(5):421–34.

    Article  CAS  PubMed  Google Scholar 

  28. Hibst R, Keller U. Effects of water spray and repetition rate on the temperature elevation during Er: Yag laser ablation of dentine. Med Applicat Lasers III. 1996;2623:139–45, International Society for Optics and Photonics

    Article  Google Scholar 

  29. Convissar RA. The biologic rationale for the use of lasers in dentistry. Dental Clinics. 2004;48(4):771–94.

    PubMed  Google Scholar 

  30. Iaria G. Clinical, morphological, and ultrastructural aspects with the use of Er:Yag and Er, Cr:Ysgg lasers in restorative dentistry. General Dentist. 2008;56(7):636.

    Google Scholar 

  31. Jacques SL. Laser-tissue interactions: photochemical, photothermal, and photomechanical. Surg Clin N Am. 1992;72(3):531–58.

    Article  CAS  PubMed  Google Scholar 

  32. Lowery AR, Gobin AM, Day ES, Halas NJ, West JL. Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomedicine. 2006;1(2):149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003;103(2):577–644.

    Article  CAS  PubMed  Google Scholar 

  34. Matos AB, de Azevedo CS, da Ana PA, Botta SB, Zezell DM. Laser technology for caries removal. In: Contemporary approach to dental caries. London: InTech; 2012.

    Google Scholar 

  35. Hibst R, Keller U. Mechanism of Er: Yag laser-induced ablation of dental hard substances. Lasers Orthop Dent Vet Med II. 1993;1880:156–63, International Society for Optics and Photonics

    Article  Google Scholar 

  36. Selting WJ. Fundamental erbium laser concepts: Part I. J Laser Dent. 2009;17(2):87–93.

    Google Scholar 

  37. Tuchin VV. Tissue optics and photonics: light-tissue interaction II. J Biomed Photon Eng. 2016;2:3.

    Article  Google Scholar 

  38. Stock K, Hibst R, Keller U. Comparison of er: Yag and er: Ysgg laser ablation of dental hard tissues. Med Appl Lasers Dermatol Ophthalmol Dentist Endosc. 1997;3192:88–96, International Society for Optics and Photonics

    Google Scholar 

  39. Spencer P, Payne JM, Cobb CM, Reinisch L, Peavy GM, Drummer DD, Suchman DL, Swafford JR. Effective laser ablation of bone based on the absorption characteristics of water and proteins. J Periodontol. 1999;70(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  40. Perhavec T, Diaci J. Comparison of er: Yag and er, cr: Ysgg dental lasers. J Oral Laser Applicat. 2008;8:2.

    Google Scholar 

  41. Selting WJ. Fundamental erbium laser concepts: part ii. J Laser Dent. 2010;18(3):116–22.

    Google Scholar 

  42. Tulea C-A, Caron J, Gehlich N, Lenenbach A, Noll R, Loosen P. Laser cutting of bone tissue under bulk water with a pulsed ps-laser at 532 nm. J Biomed Opt. 2015;20(10):105007.

    Article  PubMed  Google Scholar 

  43. Diaci J, Gaspirc B. Comparison of er: Yag and er, cr: Ysgg lasers used in dentistry. J Laser health Acad. 2012;1(1):1–13.

    Google Scholar 

  44. Trauner K, Nishioka N, Patel D. Pulsed holmium: yttrium-aluminum-garnet (ho: Yag) laser ablation of fibrocartilage and articular cartilage. Am J Sports Med. 1990;18(3):316–20.

    Article  CAS  PubMed  Google Scholar 

  45. Robertson CW, Williams D. Lambert absorption coefficients of water in the infrared. JOSA. 1971;61(10):1316–20.

    Article  CAS  Google Scholar 

  46. Walsh JT Jr, Flotte TJ, Anderson RR, Deutsch TF. Pulsed co2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage. Lasers Surg Med. 1988;8(2):108–18.

    Article  PubMed  Google Scholar 

  47. Walsh JT, Deutsch TF. Pulsed co2 laser tissue ablation: measurement of the ablation rate. Lasers Surg Med. 1988;8(3):264–75.

    Article  PubMed  Google Scholar 

  48. Walsh JT, Flotte TJ, Deutsch TF. Er: Yag laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med. 1989;9(4):314–26.

    Article  PubMed  Google Scholar 

  49. Walsh JT. Pulsed laser ablation of tissue: analysis of the removal process and tissue healing. PhD thesis, Massachusetts Institute of Technology, 1988.

    Google Scholar 

  50. Visuri SR, Walsh JT, Wigdor HA. Erbium laser ablation of dental hard tissue: effect of water cooling. Lasers Surg Med. 1996;18(3):294–300.

    Article  CAS  PubMed  Google Scholar 

  51. Kuščer L, Diaci J. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions. J Biomed Opt. 2013;18(10):108002.

    Article  PubMed  Google Scholar 

  52. Abbasi H, Beltrán L, Rauter G, Guzman R, Cattin PC, Zam A. Effect of cooling water on ablation in er: Yag laserosteotome of hard bone. Third Int Conf Applicat Opt Photon. 2017;10453:104531I, International Society for Optics and Photonics

    Google Scholar 

  53. Bernal LMB, Shayeganrad G, Kosa G, Zelechowski M, Rauter G, Friederich N, Cattin PC, Zam A. Performance of er: Yag laser ablation of hard bone under different irrigation water cooling conditions. Opt Interact Tissue Cells XXIX. 2018;10492:104920B, International Society for Optics and Photonics

    Google Scholar 

  54. Stock K, Diebolder R, Hausladen F, Wurm H, Lorenz S, Hibst R. Primary investigations on the potential of a novel diode pumped er: Yag laser system for bone surgery. Photon Therapeut Diagn IX. 2013;8565:85656D, International Society for Optics and Photonics

    Article  Google Scholar 

  55. Zhang X, Zhan Z, Liu H, Zhao H, Xie S, Ye Q. Influence of water layer thickness on hard tissue ablation with pulsed co 2 laser. J Biomed Opt. 2012;17(3):038003.

    Article  PubMed  Google Scholar 

  56. Kang H, Oh J, Welch A. Investigations on laser hard tissue ablation under various environments. Phys Med Biol. 2008;53(12):3381.

    Article  CAS  PubMed  Google Scholar 

  57. Tulea C, Caron J, Wahab H, Gehlich N, Hoefer M, Esser D, Jungbluth B, Lenenbach A, Noll R. Highly efficient nonthermal ablation of bone under bulk water with a frequency- doubled nd: Yvo 4 picosecond laser. Photon Therapeut Diagn IX. 2013;8565:85656E, International Society for Optics and Photonics

    Article  Google Scholar 

  58. Lee Y-M, Tu R, Chiang A, Huang Y-C. Average-power mediated ultrafast laser osteotomy using a mode-locked nd: Yvo 4 laser oscillator. J Biomed Opt. 2007;12(6):060505.

    Article  CAS  PubMed  Google Scholar 

  59. Plötz C, Schelle F, Bourauel C, Frentzen M, Meister J. Ablation of porcine bone tissue with an ultrashort pulsed laser (uspl) system. Lasers Med Sci. 2015;30(3):977–83.

    Article  PubMed  Google Scholar 

  60. Abbasi H, Rauter G, Guzman R, Cattin PC, Zam A. Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laser osteotomy. J Biomed Opt. 2018;23(7):071206.

    Article  Google Scholar 

  61. Porter JA, Louhisalmi YA, Karjalainen JA, Füger S. Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence. Int J Adv Manuf Technol. 2007;33(9–10):961–7.

    Article  Google Scholar 

  62. Li C-F, Johnson D, Kovacevic R. Modeling of waterjet guided laser grooving of silicon. Int J Mach Tools Manuf. 2003;43(9):925–36.

    Article  Google Scholar 

  63. Schmidt-Uhlig T, Karlitschek P, Marowsky G, Sano Y. New simplified coupling scheme for the delivery of 20 mw nd: Yag laser pulses by large core optical fibers. Appl Phys B Lasers Opt. 2001;72(2):183–6.

    Article  CAS  Google Scholar 

  64. Abbasi H, Rauter G, Guzman R, Cattin PC, Zam A. Plasma plume expansion dynamics in nanosecond nd: Yag laserosteotome. High-Speed Biomed Imag Spectrosc III: Toward Big Data Instrument Manag. 2018;10505:1050513, International Society for Optics and Photonics

    Google Scholar 

  65. Nazeri M, Majd AE, Massudi R, Tavassoli SH, Mesbahinia A, Abbasi H. Laser-induced breakdown spectroscopy via the spatially resolved technique using non-gated detector. J Russ Laser Res. 2016;37(2):164–71.

    Article  CAS  Google Scholar 

  66. Hammer DX, Jansen ED, Frenz M, Noojin GD, Thomas RJ, Noack J, Vogel A, Rockwell BA, Welch AJ. Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs. Appl Opt. 1997;36(22):5630–40.

    Article  CAS  PubMed  Google Scholar 

  67. De Giacomo A, DellAglio M, De Pascale O. Single pulse-laser induced breakdown spectroscopy in aqueous solution. Appl Phys A Mater Sci Process. 2004;79(4–6):1035–8.

    Article  CAS  Google Scholar 

  68. De Giacomo A, Dell’Aglio M, Colao F, Fantoni R. Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach. Spectrochim Acta B At Spectrosc. 2004;59(9):1431–8.

    Article  CAS  Google Scholar 

  69. Verhoff B, Harilal S, Freeman J, Diwakar P, Hassanein A. Dynamics of femto-and nanosecond laser ablation plumes investigated using optical emission spectroscopy. J Appl Phys. 2012;112(9):093303.

    Article  CAS  Google Scholar 

  70. Zeng X, Mao X, Greif R, Russo R. Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl Phys A Mater Sci Process. 2005;80(2):237–41.

    Article  CAS  Google Scholar 

  71. Tsai PS, Blinder P, Migliori BJ, Neev J, Jin Y, Squier JA, Kleinfeld D. Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Curr Opin Biotechnol. 2009;20(1):90–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cangueiro L, Vilar R. Influence of the pulse frequency and water cooling on the femtosecond laser ablation of bovine cortical bone. Appl Surf Sci. 2013;283:1012–7.

    Article  CAS  Google Scholar 

  73. Lo DD, Mackanos MA, Chung MT, Hyun JS, Montoro DT, Grova M, Liu C, Wang J, Palanker D, Connolly AJ, et al. Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone. Lasers Surg Med. 2012;44(10):805–14.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Huang H, Yang L-M, Bai S, Liu J. Smart surgical tool. J Biomed Opt. 2015;20(2):028001.

    Article  CAS  Google Scholar 

  75. Gill RK, Smith ZJ, Lee C, Wachsmann-Hogiu S. The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and libs study. J Biophotonics. 2016;9(1–2):171–80.

    Article  CAS  PubMed  Google Scholar 

  76. de Menezes RF, Harvey CM, de Martínez Gerbi MEM, Smith ZJ, Smith D, Ivaldi JC, Phillips A, Chan JW, Wachsmann-Hogiu S. Fs-laser ablation of teeth is temperature limited and provides information about the ablated components. J Biophotonics. 2017;10(10):1292–304.

    Article  PubMed  Google Scholar 

  77. Abbasi H, Rauter G, Guzman R, Cattin PC, Zam A. Differentiation of femur bone from surrounding soft tissue using laser induced breakdown spectroscopy as a feedback system for smart laser osteotomy. Biophoton: Photon Solution Better Health Care VI. 2018;10685:1068519, International Society for Optics and Photonics

    Google Scholar 

  78. Mehari F, Rohde M, Knipfer C, Kanawade R, Klämpfl F, Adler W, Stelzle F, Schmidt M. Laser induced breakdown spectroscopy for bone and cartilage differentiation- ex vivo study as a prospect for a laser surgery feedback mechanism. Biomed Opt Express. 2014;5(11):4013–23.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rohde M, Mehari F, Klämpfl F, Adler W, Neukam F-W, Schmidt M, Stelzle F. The differentiation of oral soft- and hard tissues using laser induced breakdown spectroscopy–a prospect for tissue specific laser surgery. J Biophotonics. 2017;10(10):1250–61.

    Article  CAS  PubMed  Google Scholar 

  80. Kim B-M, Feit M, Rubenchik A, Mammini B, Da Silva L. Optical feedback signal for ultrashort laser pulse ablation of tissue1. Appl Surf Sci. 1998;127:857–62.

    Article  Google Scholar 

  81. Jeong DC, Tsai PS, Kleinfeld D. Prospect for feedback guided surgery with ultra-short pulsed laser light. Curr Opin Neurobiol. 2012;22(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  82. Kenhagho HKN, Rauter G, Guzman R, Cattin PC, Zam A. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system. Adv Biomed Clin Diagn Surg Guid Syst XVI. 2018;10484:104840P, International Society for Optics and Photonics

    Google Scholar 

  83. Beltrán L, Abbasi H, Rauter G, Friederich N, Cattin P, Zam A. Effect of laser pulse duration on ablation efficiency of hard bone in microseconds regime. Third Int Conf Applicat Opt Photon. 2017;10453:104531S, International Society for Optics and Photonics

    Google Scholar 

  84. Strassl M, Wieger V, Brodoceanu D, Beer F, Moritz A, Wintner E. Ultra-short pulse laser ablation of biological hard tissue and biocompatibles, na, 2008.

    Google Scholar 

  85. Cangueiro LT, da Silva Vilar RMC, do Rego AMB, Muralha VS. Femtosecond laser ablation of bovine cortical bone. J Biomed Opt. 2012;17(12):125005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azhar Zam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beltrán Bernal, L.M., Abbasi, H., Zam, A. (2020). Laser in Bone Surgery. In: Stübinger, S., Klämpfl, F., Schmidt, M., Zeilhofer, HF. (eds) Lasers in Oral and Maxillofacial Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-29604-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29604-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29603-2

  • Online ISBN: 978-3-030-29604-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics