Skip to main content

Laser–Tissue Interaction

  • Chapter
  • First Online:

Abstract

Since their invention, lasers have been successfully employed in many applications. The basic principle of the interaction of laser with biological tissue is explained, and how many factors may influence the results of the interaction are also discussed. The tissue optical properties, the primary factors of laser interactions, including absorption and scattering, are defined. Other factors, i.e., photochemical, photothermal, photoablation, plasma-induced ablation, and photodisruption, are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boulnois JL. Photophysical processes in recent medical laser developments: a review. Lasers Med Sci. 1986;1(1):47–66.

    Article  Google Scholar 

  2. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37.

    Article  Google Scholar 

  3. Tuchin VV, Tuchin V. Tissue optics: light scattering methods and instruments for medical diagnosis. Bellingham: SPIE Press; 2007.

    Book  Google Scholar 

  4. Ferdman AG, Yannas IV. Scattering of light from histologic sections: a new method for the analysis of connective tissue. J Investig Dermatol. 1993;100(5):710–6.

    Article  CAS  Google Scholar 

  5. Leonard DW, Meek KM. Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. Biophys J. 1997;72(3):1382–7.

    Article  CAS  Google Scholar 

  6. Beauvoit B, Kitai T, Chance B. Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach. Biophys J. 1994;67(6):2501–10.

    Article  CAS  Google Scholar 

  7. Perelman LT, Backman V, Wallace M, Zonios G, Manoharan R, Nusrat A, et al. Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution. Phys Rev Lett. 1998;80(3):627.

    Article  CAS  Google Scholar 

  8. Meyer RA. Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index. Appl Opt. 1979;18(5):585–8.

    Article  CAS  Google Scholar 

  9. Henyey LG, Greenstein JL. Diffuse radiation in the galaxy. Astrophys J. 1941;93:70–83.

    Article  Google Scholar 

  10. Jacques SL, Alter CA, Prahl SA. Angular dependence of HeNe laser light scattering by human dermis. Lasers Life Sci. 1987;1(4):309–33.

    Google Scholar 

  11. Van Gemert MJC, Jacques SL, Sterenborg HJCM, Star WM. Skin optics. IEEE Trans Biomed Eng. 1989;36(12):1146–54.

    Article  Google Scholar 

  12. Von Tappeiner H (1900) Uber die Wirkung fluoreszierender Stoffe auf Infusorien nach Versuchen von O. Raab Muench Med Wochenschr, 47(5).

    Google Scholar 

  13. Von Tappeiner H, Jesionek A. Therapeutische Versuche mit fluoreszierenden Stoffen. Munch Med Wochenschr. 1903;50:2042–51.

    Google Scholar 

  14. Auler H, Banzer G. Untersuchungen über die Rolle der Porphyrine bei geschwulstkranken Menschen und Tieren. Z Krebsforsch. 1942;53(2):65–8.

    Article  CAS  Google Scholar 

  15. Kelly JF, Snell ME. Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. J Urol. 1976;115(2):150–1.

    Article  CAS  Google Scholar 

  16. Bihari I, Mester AR. The biostimulative effect of low level laser therapy of long-standing crural ulcers using helium neon laser, helium neon plus infrared lasers, and noncoherent light: preliminary report of a randomized double blind comparative study. Laser Therapy. 1989;1(2):97–8.

    Google Scholar 

  17. Berki T, Nemeth P, Hegedüs J. Biological effect of low-power helium-neon (HeNe) laser irradiation. Lasers Med Sci. 1988;3(1–4):35–9.

    Article  Google Scholar 

  18. Moore KC, Hira N, Broome IJ, Cruikshank JA. The effect of infra-red diode laser irradiation on the duration and severity of postoperative pain: a double blind trial. Laser Therapy. 1992;4(4):145–9.

    Article  Google Scholar 

  19. Srinivasan R, Mayne-Banton V. Self-developing photoetching of poly (ethylene terephthalate) films by far-ultraviolet excimer laser radiation. Appl Phys Lett. 1982;41(6):576–8.

    Article  CAS  Google Scholar 

  20. Huang H, Yang L-M, Bai S, Liu J. Smart surgical tool. J Biomed Opt. 2015;20(2):028001.

    Article  Google Scholar 

  21. Seitz F. On the theory of electron multiplication in crystals. Phys Rev. 1949;76(9):1376.

    Article  Google Scholar 

  22. Yablonovitch E, Bloembergen N. Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media. Phys Rev Lett. 1972;29(14):907.

    Article  CAS  Google Scholar 

  23. Bloembergen N. Laser-induced electric breakdown in solids. IEEE J Quantum Electron. 1974;10(3):375–86.

    Article  CAS  Google Scholar 

  24. Sacchi CA. Laser-induced electric breakdown in water. J Opt Soc Am B. 1991;8(2):337–45.

    Article  CAS  Google Scholar 

  25. Puliafito C, Steinert R. Short-pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations. IEEE J Quantum Electron. 1984;20(12):1442–8.

    Article  Google Scholar 

  26. Abbasi H, Rauter G, Guzman R, Cattin PC, Zam A. Differentiation of femur bone from surrounding soft tissue using laser induced breakdown spectroscopy as a feedback system for smart laserosteotomy. In biophotonics: photonic solutions for better health care VI. Int Soc Opt Photon. 2018;10685:1068519.

    Google Scholar 

  27. Abbasi H, Rauter G, Guzman R, Cattin PC, Zam A. Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy. J Biomed Opt. 2018;23(7):071206.

    Article  Google Scholar 

  28. Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J Fluid Mech. 1989;206:299–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azhar Zam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zam, A. (2020). Laser–Tissue Interaction. In: Stübinger, S., Klämpfl, F., Schmidt, M., Zeilhofer, HF. (eds) Lasers in Oral and Maxillofacial Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-29604-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29604-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29603-2

  • Online ISBN: 978-3-030-29604-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics