Skip to main content

Holographic 3D Visualisation of Medical Scan Images

  • Chapter
  • First Online:
Lasers in Oral and Maxillofacial Surgery

Abstract

Following decades of research and development, three-dimensional (3D) holographic visualisation and display technologies are ready to emerge. A 3D image can be described in terms of capturing the light field of a scene, which can be recreated by a surface that emits rays of light as a function of both intensity and direction. This may be realised via integral imaging or holography or a combination of these. Holographic technology relies on lasers to create diffractive interference patterns that enable encoding of amplitude and phase information within an optical medium. This is in the form of transmission or reflection holograms that act as gratings to deflect light. Suitable illumination of these patterns can form a 3D representation of an object in free space. Printed digital reflection holograms with static 3D images are now sufficiently mature for the depiction of volumetric data from computed tomography, magnetic resonance imaging or ultrasound scans. The physiology of 3D visual image perception is introduced along with tangible benefits of 3D visualisation. Image processing and computer graphics techniques for medical scans are summarised. Next-generation holographic video displays for dynamic visualisation are on the horizon, which are also being designed for medical imaging modalities. Case studies are also presented in facial forensics and surgical planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolb H, Nelson R, Fernandez E, Jones BW. Webvision—The organization of the retina and visual system. http://webvision.med.utah.edu/book/. Accessed 13 Sep 2012.

  2. Hoffman DM, Girshick AR, Akeley K, Banks MS. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J Vis. 2008;8:33.1–30. https://doi.org/10.1167/8.3.33.

    Article  Google Scholar 

  3. Lambooij M, Fortuin M, Heynderickx I, IJsselsteijn W. Visual discomfort and visual fatigue of stereoscopic displays: a review. J Imaging Sci Technol. 2009;53:30201. https://doi.org/10.2352/J.ImagingSci.Technol.2009.53.3.030201.

    Article  CAS  Google Scholar 

  4. Shibata T, Kim J, Hoffman DM, Banks MS. The zone of comfort: predicting visual discomfort with stereo displays. J Vis. 2011;11(8):11. https://doi.org/10.1167/11.8.11.

    Article  PubMed  Google Scholar 

  5. Khanh TQ, Bodrogi P. Illumination, color and imaging: evaluation and optimization of visual displays. Hoboken, NJ: Wiley; 2012.

    Google Scholar 

  6. Maxwell JC. Experiments on colour, as perceived by the eye, with remarks on colour-blindness. Earth Environ Sci Trans R Soc Edinb. 1857;21:275–98. https://doi.org/10.1017/S0080456800032117.

    Article  Google Scholar 

  7. McIntire JP, Havig PR, Geiselman EE. Stereoscopic 3D displays and human performance: a comprehensive review. Displays. 2014;35:18–26. https://doi.org/10.1016/j.displa.2013.10.004.

    Article  Google Scholar 

  8. Hackett M. Medical holography for basic anatomy training. In: I/ITSEC 2013.

    Google Scholar 

  9. The Future of Healthcare in 3D. In: HealthyComms. http://healthycomms.com/2013/07/18/the-future-of-healthcare-in-3d/. Accessed 13 Mar 2014.

  10. Fraunhofer P. New opportunities for 3D technology in medicine—Research News March 2013. http://www.fraunhofer.de/en/press/research-news/2013/march/new-opportunities-for-3D-technology-in-medicine.html. Accessed 27 Mar 2013.

  11. Bove VM. Display holography’s digital second act. Proc IEEE. 2012;100:918–28. https://doi.org/10.1109/JPROC.2011.2182071.

    Article  Google Scholar 

  12. Yaras F, Kang H, Onural L. State of the art in holographic displays: a survey. J Disp Technol. 2010;6:443–54.

    Article  CAS  Google Scholar 

  13. Lippmann G. Epreuves reversibles. photographies integrales. Comptes Rendus. 1908;146:446–51.

    Google Scholar 

  14. Jang J-S, Javidi B. Time-multiplexed integral imaging for 3D sensing and display. Opt Photonics News. 2004;15:36–43. https://doi.org/10.1364/OPN.15.4.000036.

    Article  Google Scholar 

  15. Dennis G. Improvements in and relating to microscopy. 1947.

    Google Scholar 

  16. Gabor D. A new microscopic principle. Nature. 1948;161:777–8. https://doi.org/10.1038/161777a0.

    Article  CAS  PubMed  Google Scholar 

  17. Gabor D. Microscopy by reconstructed wave-fronts. Proc R Soc Lond Ser Math Phys Sci. 1949;197:454–87. https://doi.org/10.1098/rspa.1949.0075.

    Article  Google Scholar 

  18. Gabor D. Microscopy by reconstructed wave fronts: II. Proc Phys Soc Sect B. 1951;64:449–69. https://doi.org/10.1088/0370-1301/64/6/301.

    Article  Google Scholar 

  19. Light 2015 55th anniversary of the laser’s invention. In: Int. Year Light Blog. http://light2015blog.org/2015/05/27/55th-anniversary-of-the-lasers-invention/. Accessed 16 Sep 2015.

  20. Leith EN, Upatnieks J. Reconstructed wavefronts and communication theory. J Opt Soc Am. 1962;52:1123–8. https://doi.org/10.1364/JOSA.52.001123.

    Article  Google Scholar 

  21. Denisyuk Y. On the reflection of optical properties of an object in a wave field of light scattered by it. Dokl Akad Nauk SSSR. 1962;144:1275–8.

    Google Scholar 

  22. Saxby G. Practical holography. Boca Raton, FL: CRC Press; 2004.

    Google Scholar 

  23. Benton SA, Bove VM. Holographic imaging. Hoboken, NJ: Wiley; 2008.

    Book  Google Scholar 

  24. Jurbergs D, Bruder F-K, Deuber F, et al. New recording materials for the holographic industry. Proc SPIE. 2009;7233:72330K.

    Article  Google Scholar 

  25. Goodman JW. Introduction to fourier optics. 3rd ed. Greenwood Village, CO: Roberts and Company Publishers; 2005.

    Google Scholar 

  26. Kogelnik H. Coupled wave theory for thick hologram gratings. Bell Syst Tech J. 1969;48(9):2909–47.

    Article  Google Scholar 

  27. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques. New York, NY: ACM; 1987. p. 163–9.

    Google Scholar 

  28. Shirley P, Tuchman A. A polygonal approximation to direct scalar volume rendering. In: Proceedings of the 1990 workshop on volume visualization. New York, NY: ACM; 1990. p. 63–70.

    Chapter  Google Scholar 

  29. Levoy M. Display of surfaces from volume data. IEEE Comput Graph Appl. 1988;8:29–37. https://doi.org/10.1109/38.511.

    Article  Google Scholar 

  30. Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5:335–41. https://doi.org/10.1007/s11548-010-0476-x.

    Article  CAS  PubMed  Google Scholar 

  31. Mironov V, Kasyanov V, Drake C, Markwald RR. Organ printing: promises and challenges. Regen Med. 2008;3:93–103. https://doi.org/10.2217/17460751.3.1.93.

    Article  CAS  PubMed  Google Scholar 

  32. Klug MA, Burnett T, Fancello A, et al. A scalable, collaborative, interactive light-field display system. SID Symp Dig Tech Pap. 2013;44:412–5. https://doi.org/10.1002/j.2168-0159.2012.tb05692.x.

    Article  Google Scholar 

  33. Balogh T. The HoloVizio system. In: Woods AJ, Dodgson NA, Merritt JO, et al., editors. Proc SPIE. San Jose, CA: SPIE; 2006. p. 60550U.

    Google Scholar 

  34. Balogh T. Method and apparatus for displaying three-dimensional images. 1998.

    Google Scholar 

  35. Onural L, Yaras F, Kang H. Current research activities on holographic video displays. In: Javidi B, Son J-Y, Thomas JT, Desjardins DD, editors. Three-dimensional imaging, visualization, and display 2010 and display technologies and applications for defense, security, and avionics IV. Proc SPIE. Orlando, FL: SPIE; 2010. p. 769002–10.

    Google Scholar 

  36. Hong J, Kim Y, Choi H-J, et al. Three-dimensional display technologies of recent interest: principles, status, and issues [Invited]. Appl Opt. 2011;50:H87–H115. https://doi.org/10.1364/AO.50.000H87.

    Article  PubMed  Google Scholar 

  37. Kress BC, Meyrueis P. Applied digital optics: from micro-optics to nanophotonics. Hoboken, NJ: Wiley; 2009.

    Book  Google Scholar 

  38. Voelz DG. Computational fourier optics: a matlab tutorial. Proc SPIE. Orlando, FL: SPIE; 2011.

    Book  Google Scholar 

  39. Poon T-C, Kim T. Engineering optics with Matlab. Singapore: World Scientific; 2006.

    Book  Google Scholar 

  40. Tay S, Blanche P-A, Voorakaranam R, et al. An updatable holographic three-dimensional display. Nature. 2008;451:694–8. https://doi.org/10.1038/nature06596.

    Article  CAS  PubMed  Google Scholar 

  41. Blanche P-A, Bablumian A, Voorakaranam R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature. 2010;468:80–3. https://doi.org/10.1038/nature09521.

    Article  CAS  PubMed  Google Scholar 

  42. Gao H, Li X, He Z, et al. 59.4: Real-time dynamic holographic display based on a liquid crystal thin film. SID Symp Dig Tech Pap. 2012;43:804–7. https://doi.org/10.1002/j.2168-0159.2012.tb05907.x.

    Article  Google Scholar 

  43. Gao H, Li X, He Z, et al. Real-time holographic display based on a super fast response thin film. J Phys Conf Ser. 2013;415:012052. https://doi.org/10.1088/1742-6596/415/1/012052.

    Article  Google Scholar 

  44. St-Hilaire P. Scalable optical architectures for electronic holography. Ph.D. Thesis, Massachusetts Institute of Technology. 1994.

    Google Scholar 

  45. St-Hilaire P, Benton SA, Lucente ME, Hubel PM. Color images with the MIT holographic video display. Proc SPIE. San Jose, CA: SPIE; 1992. p. 73–84.

    Google Scholar 

  46. St-Hilaire P, Benton SA, Lucente ME, et al. Advances in holographic video. Proc SPIE. San Jose, CA: SPIE; 1993. p. 188–96.

    Google Scholar 

  47. Lucente ME. Optimization of hologram computation for real-time display. Proc SPIE. San Jose, CA: SPIE; 1992. p. 32–43.

    Google Scholar 

  48. Wetzstein G, Lanman D, Heidrich W, Raskar R. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays. In: ACM SIGGRAPH 2011 papers. Vancouver, BC: ACM; 2011, p 95:1–95:12.

    Google Scholar 

  49. Smalley DE, Smithwick QYJ, Bove VM, et al. Anisotropic leaky-mode modulator for holographic video displays. Nature. 2013;498:313–7. https://doi.org/10.1038/nature12217.

    Article  CAS  PubMed  Google Scholar 

  50. Stanley M, Smith MA, Smith AP, et al. 3D electronic holography display system using a 100-megapixel spatial light modulator. Proc SPIE. San Jose, CA: SPIE; 2004. p. 297–308.

    Google Scholar 

  51. Slinger C, Cameron C, Stanley M. Computer-generated holography as a generic display technology. Computer. 2005;38:46–53. https://doi.org/10.1109/MC.2005.260.

    Article  Google Scholar 

  52. Schwerdtner A, Haussler R, Leister N. Large holographic displays for real-time applications. Proc SPIE. San Jose, CA: SPIE; 2008. p. 69120T.

    Google Scholar 

  53. Reichelt S, Leister N. Computational hologram synthesis and representation on spatial light modulators for real-time 3D holographic imaging. J Phys Conf Ser. 2013;415:012038. https://doi.org/10.1088/1742-6596/415/1/012038.

    Article  Google Scholar 

  54. Khan J, Underwood I, Greenaway A, Halonen M. A low-resolution 3D holographic volumetric display. In: Schelkens P, Ebrahimi T, Cristobal G, et al., editors. Proc SPIE. Brussels, Belgium: SPIE; 2010. p. 77231B.

    Google Scholar 

  55. Khan J, Can C, Greenaway A, Underwood I. A real-space interactive holographic display based on a large-aperture HOE. Proc SPIE. San Francisco: SPIE; 2013. p. 86440M.

    Google Scholar 

  56. Fattal D, Peng Z, Tran T, et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature. 2013;495:348–51. https://doi.org/10.1038/nature11972.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by European Union H2020 SME Phase 2 grant number 694328 HoloMedical3D, awarded to Holoxica Limited and EPSRC grant EP/G037523/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, J. (2020). Holographic 3D Visualisation of Medical Scan Images. In: Stübinger, S., Klämpfl, F., Schmidt, M., Zeilhofer, HF. (eds) Lasers in Oral and Maxillofacial Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-29604-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29604-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29603-2

  • Online ISBN: 978-3-030-29604-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics