Skip to main content

A survey of spectral models of gravity coupled to matter

  • Chapter
  • First Online:
Advances in Noncommutative Geometry

Abstract

This is a survey of the historical development of the spectral Standard Model and beyond, starting with the ground breaking paper of Alain Connes in 1988 where he observed that there is a link between Higgs fields and finite noncommutative spaces. We present the important contributions that helped in the search and identification of the noncommutative space that characterizes the fine structure of space-time. The nature and properties of the noncommutative space are arrived at by independent routes and show the uniqueness of the spectral Standard Model at low energies and the Pati–Salam unification model at high energies.

Dedicated to Alain Connes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The case N = 1 was exploited successfully in [47] for a noncommutative description of Abelian gauge theories.

  2. 2.

    Also other algebras that appear in the classification of irreducible geometries of KO-dimension have been considered in the literature: besides the case N = 4 that we consider here the simplest case N = 1 is relevant for the noncommutative geometric description of quantum electrodynamics [47] and the case N = 8 leads to the “grand algebra” of [40, 38].

  3. 3.

    The case k = 3 was ruled out by physical considerations [40].

References

  1. G. Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716 (2012) 1–29.

    Article  Google Scholar 

  2. U. Aydemir. Clifford-based spectral action and renormalization group analysis of the gauge couplings. arXiv:1902.08090.

    Google Scholar 

  3. U. Aydemir, D. Minic, C. Sun, and T. Takeuchi. Pati–Salam unification from noncommutative geometry and the TeV-scale W R boson. Int. J. Mod. Phys. A31 (2016) 1550223.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. W. Barrett. A Lorentzian version of the non-commutative geometry of the standard model of particle physics. J. Math. Phys. 48 (2007) 012303.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Beenakker, T. van den Broek, and W. D. van Suijlekom. Supersymmetry and noncommutative geometry, volume 9 of SpringerBriefs in Mathematical Physics. Springer, Cham, 2016.

    Book  MATH  Google Scholar 

  6. F. Besnard. On the uniqueness of Barrett’s solution to the fermion doubling problem in noncommutative geometry. arXiv:1903.04769.

    Google Scholar 

  7. L. Boyle and S. Farnsworth. Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics, 1401.5083.

    Google Scholar 

  8. L. Boyle and S. Farnsworth. A new algebraic structure in the standard model of particle physics. JHEP 06 (2018) 071.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. van den Broek and W. D. van Suijlekom. Supersymmetric QCD and noncommutative geometry. Commun. Math. Phys. 303 (2011) 149–173.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. van den Broek and W. D. van Suijlekom. Supersymmetric QCD from noncommutative geometry. Phys. Lett. B699 (2011) 119–122.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Brouder, N. Bizi, and F. Besnard. The Standard Model as an extension of the noncommutative algebra of forms. arXiv:1504.03890.

    Google Scholar 

  12. A. H. Chamseddine and A. Connes. Universal formula for noncommutative geometry actions: Unifications of gravity and the Standard Model. Phys. Rev. Lett. 77 (1996) 4868–4871.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. H. Chamseddine. Connection between space-time supersymmetry and noncommutative geometry. Phys. Lett. B332 (1994) 349–357.

    Article  Google Scholar 

  14. A. H. Chamseddine and A. Connes. Why the Standard Model. J. Geom. Phys. 58 (2008) 38–47.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. H. Chamseddine and A. Connes. Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Part I. Fortsch. Phys. 58 (2010) 553–600.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. H. Chamseddine and A. Connes. Resilience of the Spectral Standard Model. JHEP 1209 (2012) 104.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. H. Chamseddine, A. Connes, and M. Marcolli. Gravity and the Standard Model with neutrino mixing. Adv. Theor. Math. Phys. 11 (2007) 991–1089.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. H. Chamseddine, A. Connes, and V. Mukhanov. Geometry and the quantum: Basics. JHEP 1412 (2014) 098.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. H. Chamseddine, A. Connes, and V. Mukhanov. Quanta of geometry: Noncommutative aspects. Phys. Rev. Lett. 114 (2015) 091302.

    Article  MathSciNet  Google Scholar 

  20. A. H. Chamseddine, A. Connes, and W. D. van Suijlekom. Entropy and the spectral action. Commun. Math. Phys. (online first) [arXiv:1809.02944].

    Google Scholar 

  21. A. H. Chamseddine, A. Connes, and W. D. van Suijlekom. Beyond the spectral Standard Model: Emergence of Pati-Salam unification. JHEP 1311 (2013) 132.

    Article  MATH  Google Scholar 

  22. A. H. Chamseddine, A. Connes, and W. D. van Suijlekom. Grand unification in the spectral Pati-Salam model. JHEP 11 (2015) 011.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. H. Chamseddine, G. Felder, and J. Fröhlich. Unified gauge theories in noncommutative geometry. Phys. Lett. B. 296 (1992) 109.

    Article  MathSciNet  Google Scholar 

  24. A. H. Chamseddine, G. Felder, and J. Fröhlich. Gravity in noncommutative geometry. Comm. Math. Phys. 155 (1993) 205–217.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. H. Chamseddine, J. Fröhlich, and O. Grandjean. The gravitational sector in the Connes-Lott formulation of the standard model. J. Math. Phys. 36 (1995) 6255–6275.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B716 (2012) 30–61.

    Article  Google Scholar 

  27. A. Connes. Noncommutative differential geometry. Publ. Math. IHES 39 (1985) 257–360.

    MathSciNet  Google Scholar 

  28. A. Connes. Essay on physics and noncommutative geometry. In The interface of mathematics and particle physics (Oxford, 1988), volume 24 of Inst. Math. Appl. Conf. Ser. New Ser., pages 9–48. Oxford Univ. Press, New York, 1990.

    Google Scholar 

  29. A. Connes. Noncommutative Geometry. Academic Press, San Diego, 1994.

    MATH  Google Scholar 

  30. A. Connes. Noncommutative geometry and reality. J. Math. Phys. 36(11) (1995) 6194–6231.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Connes. On the foundations of noncommutative geometry. In The unity of mathematics, volume 244 of Progr. Math., pages 173–204. Birkhäuser Boston, Boston, MA, 2006.

    Google Scholar 

  32. A. Connes. Noncommutative geometry year 2000 [ MR1826266 (2003g:58010)]. In Highlights of mathematical physics (London, 2000), pages 49–110. Amer. Math. Soc., Providence, RI, 2002.

    Google Scholar 

  33. A. Connes and J. Lott. Particle models and noncommutative geometry. Nucl. Phys. Proc. Suppl. 18B (1991) 29–47.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Connes and H. Moscovici. Type III and spectral triples. In Traces in number theory, geometry and quantum fields, Aspects Math., E38, pages 57–71. Friedr. Vieweg, Wiesbaden, 2008.

    Google Scholar 

  35. L. Dabrowski. On noncommutative geometry of the Standard Model: fermion multiplet as internal forms. In 36th Workshop on Geometric Methods in Physics (XXXVI WGMP) Bialowieza, Poland, July 2–8, 2017, 2017.

    Google Scholar 

  36. L. Dabrowski, F. D’Andrea, and A. Sitarz. The Standard Model in noncommutative geometry: fundamental fermions as internal forms. Lett. Math. Phys. 108 (2018) 1323–1340.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Dabrowski and A. Sitarz. Fermion masses, mass-mixing and the almost commutative geometry of the Standard Model, 1806.07282.

    Google Scholar 

  38. A. Devastato, F. Lizzi, and P. Martinetti. Higgs mass in noncommutative geometry. Fortschr. Phys. 62 (2014) 863–868.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Devastato, S. Farnsworth, F. Lizzi, and P. Martinetti. Lorentz signature and twisted spectral triples. JHEP 03 (2018) 089.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Devastato, F. Lizzi, and P. Martinetti. Grand symmetry, spectral action, and the Higgs mass. JHEP 1401 (2014) 042.

    Article  Google Scholar 

  41. A. Devastato and P. Martinetti. Twisted spectral triple for the Standard Model and spontaneous breaking of the Grand Symmetry. Math. Phys. Anal. Geom. 20 (2017) 2.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Dong and M. Khalkhali. Second quantization and the spectral action. arXiv:1903.09624.

    Google Scholar 

  43. M. Dubois-Violette. Dérivations et calcul différentiel non commutatif. C. R. Acad. Sci. Paris Sér. I Math. 307 (1988) 403–408.

    MathSciNet  MATH  Google Scholar 

  44. M. Dubois-Violette, R. Kerner, and J. Madore. Classical bosons in a noncommutative geometry. Class. Quant. Grav. 6 (1989) 1709.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Dubois-Violette, R. Kerner, and J. Madore. Gauge bosons in a noncommutative geometry. Phys. Lett. B217 (1989) 485–488.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Dubois-Violette, J. Madore, and R. Kerner. Noncommutative differential geometry and new models of gauge theory. J. Math. Phys. 31 (1990) 323.

    Article  MathSciNet  MATH  Google Scholar 

  47. K. van den Dungen and W. D. van Suijlekom. Electrodynamics from noncommutative geometry. J. Noncommut. Geom. 7, 433–456 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Eckstein and B. Iochum. Spectral Action in Noncommutative Geometry. Mathematical Physics Studies. Springer, 2018.

    Book  MATH  Google Scholar 

  49. S. Farnsworth and L. Boyle. Non-associative geometry and the spectral action principle. JHEP (2015) 023, front matter+25.

    Google Scholar 

  50. H. Figueroa, J. M. Gracia-Bondía, F. Lizzi, and J. C. Várilly. A nonperturbative form of the spectral action principle in noncommutative geometry. J. Geom. Phys. 26 (1998) 329–339.

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Gonderinger, Y. Li, H. Patel, and M. J. Ramsey-Musolf. Vacuum Stability, Perturbativity, and Scalar Singlet Dark Matter. JHEP 1001 (2010) 053.

    Article  MATH  Google Scholar 

  52. J. M. Gracia-Bondía, B. Iochum, and T. Schücker. The standard model in noncommutative geometry and fermion doubling. Phys. Lett. B 416 (1998) 123–128.

    Article  MathSciNet  Google Scholar 

  53. B. Iochum, T. Schucker, and C. Stephan. On a classification of irreducible almost commutative geometries. J. Math. Phys. 45 (2004) 5003–5041.

    Article  MathSciNet  MATH  Google Scholar 

  54. D. Kastler. A detailed account of Alain Connes’ version of the standard model in noncommutative geometry. I, II. Rev. Math. Phys. 5 (1993) 477–532.

    Article  MathSciNet  MATH  Google Scholar 

  55. D. Kastler. A detailed account of Alain Connes’ version of the standard model in non-commutative differential geometry. III. Rev. Math. Phys. 8 (1996) 103–165.

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Kastler and T. Schücker. A detailed account of Alain Connes’ version of the standard model. IV. Rev. Math. Phys. 8 (1996) 205–228.

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Kastler and T. Schücker. The standard model à la Connes-Lott. J. Geom. Phys. 24 (1997) 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  58. T. Krajewski. Classification of finite spectral triples. J. Geom. Phys. 28 (1998) 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  59. M.A. Kurkov and F. Lizzi. Clifford Structures in noncommutative geometry and the extended scalar sector. Phys.Rev. D97 (2018) 085024.

    MathSciNet  Google Scholar 

  60. G. Landi. An Introduction to Noncommutative Spaces and their Geometry. Springer-Verlag, 1997.

    MATH  Google Scholar 

  61. G. Landi and P. Martinetti. On twisting real spectral triples by algebra automorphisms. Lett. Math. Phys. 106 (2016) 1499–1530.

    Article  MathSciNet  MATH  Google Scholar 

  62. G. Landi and P. Martinetti. Gauge transformations for twisted spectral triples. Lett. Math. Phys. 108 (2018) 2589–2626.

    Article  MathSciNet  MATH  Google Scholar 

  63. F. Lizzi, G. Mangano, G. Miele, and G. Sparano. Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D55 (1997) 6357–6366.

    MathSciNet  Google Scholar 

  64. F. Lizzi. Noncommutative Geometry and Particle Physics. PoS CORFU2017 (2018) 133.

    Google Scholar 

  65. J. Madore. An Introduction to Noncommutative Differential Geometry and its Physical Applications. Cambridge University Press, 1995.

    MATH  Google Scholar 

  66. C. P. Martín, J. M. Gracia-Bondía, and J. C. Várilly. The standard model as a noncommutative geometry: the low-energy regime. Phys. Rep. 294 (1998) 363–406.

    Article  MathSciNet  Google Scholar 

  67. R. Mohapatra. Unification and supersymmetry. The frontiers of quark-lepton physics. Springer, New York, third edition, 2003.

    Google Scholar 

  68. M. Paschke and A. Sitarz. Discrete spectral triples and their symmetries. J. Math. Phys. 39 (1998) 6191–6205.

    Article  MathSciNet  MATH  Google Scholar 

  69. F. Scheck, H. Upmeier, and W. Werner, editors. Noncommutative geometry and the standard model of elementary particle physics, volume 596 of Lecture Notes in Physics. Springer-Verlag, Berlin, 2002. Papers from the conference held in Hesselberg, March 14–19, 1999.

    Google Scholar 

  70. C. A. Stephan. Almost-commutative geometries beyond the Standard Model. J. Phys. A39 (2006) 9657.

    MathSciNet  MATH  Google Scholar 

  71. C. A. Stephan. Almost-commutative geometries beyond the Standard Model. ii. new colours. J. Phys. A40 (2007) 9941.

    Article  MathSciNet  MATH  Google Scholar 

  72. C. A. Stephan. Beyond the Standard Model: A Noncommutative Approach, 0905.0997.

    Google Scholar 

  73. C. A. Stephan. New scalar fields in noncommutative geometry. Phys. Rev. D79 (2009) 065013.

    MathSciNet  Google Scholar 

  74. C. A. Stephan. A Dark Sector Extension of the Almost-Commutative Standard Model. Int. J. Mod. Phys. A29 (2014) 1450005.

    Article  MathSciNet  MATH  Google Scholar 

  75. W. D. van Suijlekom. Noncommutative Geometry and Particle Physics. Springer, 2015.

    Book  MATH  Google Scholar 

  76. I. Todorov and M. Dubois-Violette. Deducing the symmetry of the standard model from the automorphism and structure groups of the exceptional Jordan algebra. Int. J. Mod. Phys. A33 (2018) 1850118.

    Article  MathSciNet  MATH  Google Scholar 

  77. J. C. Várilly and J. M. Gracia-Bondía. Connes’ noncommutative differential geometry and the standard model. J. Geom. Phys. 12 (1993) 223–301.

    Article  MathSciNet  MATH  Google Scholar 

  78. E. P. Wigner. Normal form of antiunitary operators. J. Mathematical Phys. 1 (1960) 409–413.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of A. H. C. is supported in part by the National Science Foundation Grant No. Phys-1518371. He also thanks the Radboud Excellence Initiative for hosting him at Radboud University where this research was carried out. We would like to thank Alain Connes for sharing with us his insights and ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter D. van Suijlekom .

Editor information

Editors and Affiliations

Appendix: Pati–Salam model: potential analysis

Appendix: Pati–Salam model: potential analysis

We here include the scalar potential analysis for the composite Pati–Salam model, as described in Section 5.2 above.

If there is unification of lepton and quark couplings, then ρ = 1 so that the \(\Sigma ^I_J\)-field decouples. In that case we have

where we have absorbed some constant factors by redefining the couplings λ H, λ H Σ, and λ Σ.

We choose unitarity gauge for the Δ and ϕ-fields, in the following precise sense.

Lemma 6

For each value of the fields \(\{ \phi _{\dot a}^b, \Delta _{\dot a I}\}\) there is an element (u R, u L, u) ∈ SU(2)R × SU(2)L × SU(4) such that

$$\displaystyle \begin{aligned} u_R \begin{pmatrix} \phi_{\dot 1}^1 & \phi_{\dot 1}^2 \\ {} \phi_{\dot 2}^1 & \phi_{\dot 2}^2 \end{pmatrix} u_L^* & = \begin{pmatrix} h & 0 \\ 0 & \chi \end{pmatrix} \end{aligned} $$

and

$$\displaystyle \begin{aligned} u_R \begin{pmatrix} \Delta_{\dot 1 1}& \Delta_{\dot 1 2}& \Delta_{\dot 1 3}& \Delta_{\dot 1 4}\\ \Delta_{\dot 2 1}& \Delta_{\dot 2 2}& \Delta_{\dot 2 3}& \Delta_{\dot 2 4}\end{pmatrix} u^t &= \begin{pmatrix} 1+\delta_0 & 0& 0 & 0 \\ \delta_1 & \eta_1& 0 &0 \end{pmatrix} \end{aligned} $$

where h, δ 0, δ 1, η 1 are real fields and χ is a complex field.

Proof

Consider the singular value decomposition of the 2 × 2 matrix \((\phi _{\dot a}^b)\):

$$\displaystyle \begin{aligned} \begin{pmatrix} \phi_{\dot 1}^1 & \phi_{\dot 1}^2 \\ {} \phi_{\dot 2}^1 & \phi_{\dot 2}^2 \end{pmatrix} = U \begin{pmatrix} h & 0 \\ 0 & k \end{pmatrix} V^* \end{aligned}$$

for unitary 2 × 2 matrices U, V  and real coefficients h, k. If we define

$$\displaystyle \begin{aligned} u_R &= \begin{pmatrix} 1 & 0 \\ 0 & \det U\end{pmatrix}U^* \in SU(2)_R\\ u_L &= \begin{pmatrix} 1 & 0 \\ 0 & \det V\end{pmatrix} V^*\in SU(2)_L \end{aligned} $$

it follows that

$$\displaystyle \begin{aligned} u_R \begin{pmatrix} \phi_{\dot 1}^1 & \phi_{\dot 1}^2 \\ {} \phi_{\dot 2}^1 & \phi_{\dot 2}^2 \end{pmatrix} u_L^* & = \begin{pmatrix} h & 0 \\ 0 & k \det UV^* \end{pmatrix} =: \begin{pmatrix} h & 0 \\ 0 & \chi \end{pmatrix}. \end{aligned} $$

Next, we consider \(\Delta _{\dot aI}\) and write

$$\displaystyle \begin{aligned} \left(\Delta_{\dot aI}\right) = \begin{pmatrix} u_1^* \\ u_2^* \end{pmatrix},\qquad \text{with } u_a^* = \begin{pmatrix} \Delta_{\dot a 1}& \Delta_{\dot a 2}& \Delta_{\dot a 3}& \Delta_{\dot a 4} \end{pmatrix} \end{aligned}$$

for a = 1, 2. We may suppose that the vectors u 1, u 2 are such that their inner product \(u_1^* u_2\) is a real number. Indeed, if this is not the case, then multiply \(\Delta _{\dot aI}\) by a matrix in SU(2)R as follows:

$$\displaystyle \begin{aligned} \begin{pmatrix} u_1^* \\ u_2^* \end{pmatrix}\mapsto \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^* \end{pmatrix}\begin{pmatrix} u_1^* \\ u_2^* \end{pmatrix} = \begin{pmatrix} \alpha u_1^* \\ \alpha^* u_2^* \end{pmatrix}. \end{aligned}$$

Now the inner product is \((\alpha ^* u_1)^* \alpha u_2 = (\alpha )^2 u_1^* u_2\) and we may choose α so as to cancel the phase of \(u_1^* u_2\). Moreover, this transformation respects the above form of \(\phi _{\dot a}^b\) after a SU(2)L-transformation of exactly the same form:

$$\displaystyle \begin{aligned} \begin{pmatrix} h & 0 \\ 0 & \chi \end{pmatrix} \mapsto \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^* \end{pmatrix} \begin{pmatrix} h & 0 \\ 0 & \chi \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^* \end{pmatrix} ^* = \begin{pmatrix} h & 0 \\ 0 & \chi \end{pmatrix} . \end{aligned}$$

Thus let us continue with the vectors u 1, u 2 satisfying \(u_1^* u_2 \in \mathbb {R}\). We apply Gramm–Schmidt orthonormalization to u 1 and u 2, to arrive at the following orthonormal set of vectors {e 1, e 2} in \(\mathbb {C}^4\):

$$\displaystyle \begin{aligned} e_1 = \frac{u_1 }{\| u_1\|}; \qquad e_2 = \frac{u_2 - \frac{u_1^* u_2}{\|u_1\|} u_1}{\|u_2 - \frac{u_1^* u_2}{\|u_1\|} u_1\|}. \end{aligned}$$

We complete this set by choosing two additional orthonormal vectors e 3 and e 4 and write a unitary 4 × 4 matrix:

$$\displaystyle \begin{aligned} U = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 \end{pmatrix} \end{aligned}$$

The sought-for matrix u ∈ SU(4) is determined by

$$\displaystyle \begin{aligned} u^t = U \begin{pmatrix} 1_3 & 0 \\ 0 & \det U^* \end{pmatrix} \end{aligned}$$

so as to give

$$\displaystyle \begin{aligned} \left(\Delta_{\dot aI}\right) u^t = \begin{pmatrix} u_1^* e_1 & 0 & 0 & 0 \\ u_2^* e_1 & u_2^* e_2 & 0 & 0 \end{pmatrix} =: \begin{pmatrix} 1+\delta_0 & 0 & 0 & 0 \\ \delta_1 & \eta_1 & 0 & 0 \end{pmatrix} \end{aligned} $$

Remark 7

Note that this is compatible with the dimension of the quotient of the space of field values by the group. Indeed, the fields \(\phi _{\dot a}^b\) and \(\Delta _{\dot a I}\) span a real 24-dimensional space (at each manifold point). The dimension of the orbit space is then \(24- \dim P\) with P a principal orbit of the action of SU(2)R × SU(2)L × SU(4) on the space of field values. This dimension \( \dim P\) is determined by the dimension of the group and of a principal isotropy group.

First, we see that up to conjugation there is always a SU(2)-subgroup of SU(4) leaving \(\Delta _{\dot aI}\) invariant: it corresponds to SU(2)-transformations in the space orthogonal to the vectors \(\Delta _{\dot 1 I}\) and \(\Delta _{\dot 2I}\) in \(\mathbb {C}^4\). Moreover, one can compute that the isotropy subgroup of the field values

$$\displaystyle \begin{aligned} \begin{pmatrix} \phi_{\dot a}^b \end{pmatrix} = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}; \qquad \begin{pmatrix} \Delta_{\dot a I} \end{pmatrix} = \begin{pmatrix}1 & 0& 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \end{aligned}$$

is given by \(\mathbb Z_2 \times SU(2)\). Hence, the dimension of the principal orbit is 21 − 3 = 18 so that the orbit space is six-dimensional. This corresponds to the 4 real fields h, δ 0, δ 1, η 1 and the complex field χ.

We allow for the color SU(3)-symmetry not to be broken spontaneously, hence we only choose unitarity gauge in the SU(2)R × SU(2)L × U(1)-representations. That is, we retain the row vector \(\Delta _{\dot 2 I}\) for I = 1, …, 4 as a variable and write

$$\displaystyle \begin{aligned} \begin{pmatrix} \Delta_{\dot a I} \end{pmatrix} = \begin{pmatrix}\sqrt{w}+\delta_0/\sqrt w & 0& 0 & 0 \\ \delta_1/\sqrt{w} & \eta_1/\sqrt{w} & \eta_2/\sqrt{w} & \eta_3/\sqrt{w} \end{pmatrix} \end{aligned}$$

so that (η i) forms a scalar SU(3)-triplet field (so-called scalar leptoquarks). The reason for the rescaling with \(\sqrt {w}\) is that it yields the right kinetic terms for δ 0, δ 1, and η. Indeed, from the spectral action we then have

$$\displaystyle \begin{aligned} \frac{1}{2}\partial_{\mu}H_{\overset{.}{a} I\overset{.}{b}J}\partial^{\mu}H^{\overset{.}{a}I\overset{.}{b}J} &=\frac{1}{2} \partial_\mu \left(\Delta_{\overset{.}{a}J}\Delta_{\overset{.}{b}I}\right) \partial^\mu \left(\Delta^{\overset{.}{a}J}\Delta^{\overset{.}{b}J}\right) \\ &\sim \sum_{a=0}^1 \partial_\mu \delta_a \partial^\mu \delta^a + \partial_\mu \eta \partial^\mu \eta^* + \text{ higher order} \end{aligned} $$

The scalar potential becomes in terms of the fields h, χ, δ 0, δ 1, η i:

$$\displaystyle \begin{aligned} &\mathcal{L}_{pot}(h,\chi, \delta_0,\delta_1,\eta) = - \mu^2 ( h^2 + |\chi|{}^2) -\nu^2 \left( (w+ \delta_0)^2 + \delta_1^2 + |\eta|{}^2 \right)^2 /w^2 \\ & \quad + \lambda_{H\Sigma} \left( (w+\delta_0)^2 h^2 + (\delta_1^2 + |\eta|{}^2) |\chi|{}^2 \right)\left( (w+ \delta_0)^2 + \delta_1^2 + |\eta|{}^2 \right) /w^2 \\ & \quad + \lambda_H \left( (w+\delta_0)^4 + 2 (w+ \delta_0)^2 \delta_1^2+ (\delta_1^2 +|\eta|{}^2)^2 \right)^2/w^4 + \lambda_\Sigma (h^4+ |\chi|{}^4) \end{aligned} $$

As we are interested in the truncation to the Standard Model, we look for extrema with 〈δ 1〉 = 〈η i〉 = 0, while setting 〈h〉 = v, 〈δ 0〉 = 0, 〈χ〉 = x. Note that the symmetry of these vevs is

$$\displaystyle \begin{aligned} &\left\{ \left(\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^* \end{pmatrix}, \begin{pmatrix} \lambda^* & 0 \\ 0 & \lambda \end{pmatrix}, \begin{pmatrix} \lambda^* & 0 \\ 0 & m \end{pmatrix}\right): \lambda \in U(1) , m \in SU(3) \right\} \\ &\quad \subset SU(2)_R \times SU(2)_L \times SU(4) \end{aligned} $$

In other words, SU(2)R × SU(2)L × SU(4) is broken by the above vevs to U(1) × SU(3).

The first derivative of V  vanishes for these vevs precisely if

$$\displaystyle \begin{aligned} 2v (w^2 \lambda_{H \Sigma} +2v^2 \lambda_\Sigma - \mu^2 ) = 0,\\ 4 x^3 \lambda_\Sigma - 2x \mu^2 = 0,\\ 4w (2w^2 \lambda_H + v^2 \lambda_{H \Sigma} - \nu^2) =0. \end{aligned} $$

This gives rise to the fine-tuning of v, w as in [16]:

$$\displaystyle \begin{aligned} w^2 \lambda_{H \Sigma} +2v^2 \lambda_\Sigma - \mu^2 , \qquad 2w^2 \lambda_H + v^2 \lambda_{H \Sigma} - \nu^2 \end{aligned}$$

choosing μ and ν such that the solutions v, w are of the desired orders. Moreover, we find that the vev for χ either vanishes or is equal to \(x=\sqrt {\mu ^2/2\lambda _\Sigma }\). Note that this latter vev appears precisely at the entry k dh (or k eh) of the finite Dirac operator, which we have disregarded by setting ρ = 1.

If 〈χ〉 = x = 0, then the Hessian is (derivatives with respect to h, χ, δ 0, δ 1, η):

where the 1 3 is the identity matrix in color space, corresponding to the η-field. This Hessian is not positive definite so we disregard the possibility that 〈χ〉 = 0.

If \(x=\sqrt {\mu ^2/2\lambda _\Sigma }\), then the Hessian is

which is positive-definite if

$$\displaystyle \begin{aligned} \lambda_{H\Sigma}^2 \geq 8 \lambda_H \lambda_\Sigma. \end{aligned} $$
(56)

Note that this relation may hold only at high-energies. The masses for χ, δ 1, and η are then readily found to be:

$$\displaystyle \begin{aligned} m_\chi^2 &= 4w^2 \lambda_{H \Sigma}+8v^2 \lambda_\Sigma,\\ m_{\delta_1}^2 &= w^2 \frac{\lambda_{H \Sigma}^2}{\lambda_\Sigma} ,\\ m_{\eta}^2 &=w^2 \frac{ \lambda_{H\Sigma}^2 - 8 \lambda_H \lambda_\Sigma}{\lambda_\Sigma} . \end{aligned} $$

Under the assumption that \(v^2 \approx 10^2 \operatorname {\mathrm {GeV}}, w^2 \approx 10^{11} \operatorname {\mathrm {GeV}}\) we have \(m_\chi ^2 \approx 10^{11} \operatorname {\mathrm {GeV}}\) and \(m_{\delta _1}^2, m_{\eta } \approx 10^{11} \operatorname {\mathrm {GeV}}\).

The (non-diagonal) h and δ 0 sector has mass eigenstates as in [16]:

$$\displaystyle \begin{aligned} m_\pm^2 &= 16 w^2\lambda_H +4 v^2 \lambda_\Sigma \\ &\quad \pm 4\sqrt{16 w^{4} \lambda_H^2 + v^4 \lambda_\Sigma^2 + 4v^2 w^2 \left(\lambda_{H \Sigma}^2 - 2 \lambda_H \lambda_\Sigma \right)} \end{aligned} $$

Under the assumption that v 2 ≪ w 2 we can expand the square root:

$$\displaystyle \begin{aligned} &4 \sqrt{ 16 \lambda_H^2 w^{4} \left(1 + \frac{\lambda_\Sigma^2}{\lambda_H^2}\frac{v^4}{w^{4}} + \frac{\lambda_{H \Sigma}^2 - 2 \lambda_H \lambda_\Sigma}{4\lambda_H^2} \frac{v^2}{w^2}\right)}\\ &\quad \approx 16 \lambda_H w^2 \left(1 +\frac{\lambda_{H \Sigma}^2 - 2 \lambda_H \lambda_\Sigma}{8\lambda_H^2} \frac{v^2}{w^2}\right) \\ &\quad = 16\lambda_H w^2 +\frac{2\lambda_{H \Sigma}^2}{\lambda_H} v^2 - 4\lambda_\Sigma v^2. \end{aligned} $$

Consequently,

$$\displaystyle \begin{aligned} m_+ &\approx 32 \lambda_H w^2 + 2 \frac{2\lambda_{H \Sigma}^2}{\lambda_H} v^2, \\ m_- &\approx 8 \lambda_\Sigma v^2 \left(1- \frac{\lambda_{H \Sigma}^2}{4\lambda_H \lambda_\Sigma} \right). \end{aligned} $$

which are of the order of 1011 and \(10^2 \operatorname {\mathrm {GeV}}\), respectively. This requires that we have at low energies

$$\displaystyle \begin{aligned} 4\lambda_H \lambda_\Sigma \geq \lambda_{H \Sigma}^2,\end{aligned} $$
(57)

which fully agrees with [16] when we identify δ 0 ≡ σ and with the couplings related via

$$\displaystyle \begin{aligned} \lambda_H = \frac 14 \lambda_\sigma , \qquad \lambda_{H \Sigma} = \frac 12 \lambda_{h\sigma}, \qquad \lambda_\Sigma = \frac 14 \lambda_h\end{aligned} $$

Note the tension between Equations (57) and (56), calling for a careful study of the running of the couplings in order to guarantee positive mass eigenstates at their respective energies.

We have summarized the scalar particle content of the above model in Table 1. In terms of the original scalar fields \(\phi _{\dot a}^b\) and \(\Delta _{\dot aI}\) the vevs are of the following form:

$$\displaystyle \begin{aligned} \begin{pmatrix} \phi_{\dot a}^b \end{pmatrix} &= \begin{pmatrix} v & 0 \\ 0 & \sqrt{\mu^2/2 \Lambda_\Sigma}\end{pmatrix}\\ \begin{pmatrix} \Delta_{\dot a I} \end{pmatrix} &= \begin{pmatrix} w & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} . \end{aligned} $$

This shows that there are two scales of spontaneous symmetry breaking: at 1011\(10^{12} \operatorname {\mathrm {GeV}}\) we have

$$\displaystyle \begin{aligned} SU(2)_R \times SU(2)_L \times SU(4) \to U(1)_Y \times SU(2)_L \times SU(3) \end{aligned}$$

and then at electroweak scale (both v and μ) we have

$$\displaystyle \begin{aligned} U(1)_Y \times SU(2)_L \times SU(3) \to U(1)_Q \times SU(3) \end{aligned}$$
Table 1 Scalar particle content with SM-representations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chamseddine, A., van Suijlekom, W.D. (2019). A survey of spectral models of gravity coupled to matter. In: Chamseddine, A., Consani, C., Higson, N., Khalkhali, M., Moscovici, H., Yu, G. (eds) Advances in Noncommutative Geometry. Springer, Cham. https://doi.org/10.1007/978-3-030-29597-4_1

Download citation

Publish with us

Policies and ethics