Skip to main content

Extended atomicity through non-differentiability and its physical implications

  • Chapter
  • First Online:
Atomicity through Fractal Measure Theory

Abstract

In this chapter, atomicity is presented via quantum measure theory and some of its physical applications are highlighted. Precisely, the mathematical concept of (minimal) atomicity is extended from a physical perspective, based on the non-differentiability of motion curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agahi, H., Mesiar, R., Babakhani, A.: Generalized expectation with general kernel on g-semirings and its applications. Rev. Real Acad. Cienc. Exact. Fís. Natur. Ser. A Mat. 111(3), 863–875 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agop, M., Gavriluţ, A., Crumpei, G., Doroftei, B.: Informational non-differentiable entropy and uncertainty. Relations in complex systems. Entropy 16, 6042–6058 (2014)

    MATH  Google Scholar 

  3. Agop, M., Gavriluţ, A., Rezuş, E.: Implications of Onicescu’s informational energy in some fundamental physical models. Int. J. Mod. Phys. B 29, 1550045, 19 pp. (2015). https://doi.org/10.1142/S0217979215500459

    Article  MathSciNet  MATH  Google Scholar 

  4. Agop, M., Gavriluţ, A., Ştefan, G., Doroftei, B.: Implications of non-differentiable entropy on a space-time manifold. Entropy 17, 2184–2197 (2015)

    Article  Google Scholar 

  5. Agop, M., Gavriluţ, A., Păun, V.P., Filipeanu, D., Luca, F.A., Grecea, C., Topliceanu, L.: Fractal information by means of harmonic mappings and some physical implications. Entropy 18, 160 (2016)

    Article  Google Scholar 

  6. Audenaert, K.M.R.: Subadditivity of q-entropies for q > 1. J. Math. Phys. 48, 083507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barbilian, D.: Die von einer Quantik induzierte Riemannsche Metrik . C. R. Acad. Roum. Sci. 2, 198 (1937)

    MATH  Google Scholar 

  8. Boonsri, N., Saejung, S.: Some fixed point theorems for multivalued mappings in metric spaces. Rev. Real Acad. Cienc. Exact. Fís. Natur. Ser. A Mat. 111(2), 489–497 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cavaliere, P., Ventriglia, F.: On nonatomicity for non-additive functions. J. Math. Anal. Appl. 415(1), 358–372 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chiţescu, I.: Finitely purely atomic measures and \(\mathcal {L}^{p}\)-spaces. An. Univ. Bucureşti Şt. Nat. 24, 23–29 (1975)

    Google Scholar 

  11. Chiţescu, I.: Finitely purely atomic measures: coincidence and rigidity properties. Rend. Circ. Mat. Palermo (2) 50(3), 455–476 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dinculeanu, N.: Measure Theory and Real Functions (in Romanian). Didactic and Pedagogical Publishing House, Bucharest (1964)

    Google Scholar 

  13. Drewnowski, L.: Topological rings of sets, continuous set functions, integration, I, II, III. Bull. Acad. Polon. Sci. 20, 269–276, 277–286, 439–445 (1972)

    Google Scholar 

  14. Flanders, H.: Differential Forms with Applications to the Physical Science. Dover Publication, New York (1989)

    MATH  Google Scholar 

  15. Gavriluţ, A.: Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions. Fuzzy Sets and Systems 160 (2009), 1308–1317. Erratum Fuzzy Sets Syst. 161, 2612–2613 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gavriluţ, A.: Fuzzy Gould integrability on atoms. Iran. J. Fuzzy Syst. 8(3), 113–124 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Gavriluţ, A.: Regular Set Multifunctions. Pim Publishing House, Iaşi (2012)

    MATH  Google Scholar 

  18. Gavriluţ, A., Agop, M.: An Introduction to the Mathematical World of Atomicity through a Physical Approach. ArsLonga Publishing House, Iaşi (2016)

    Google Scholar 

  19. Gavriluţ, A., Croitoru, A.: On the Darboux property in the multivalued case. Ann. Univ. Craiova Math. Comput. Sci. Ser. 35, 130–138 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Gavriluţ, A., Croitoru, A.: Non-atomicity for fuzzy and non-fuzzy multivalued set functions. Fuzzy Sets Syst. 160, 2106–2116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gavriluţ, A., Croitoru, A.: Pseudo-atoms and Darboux property for set multifunctions. Fuzzy Sets Syst. 161(22), 2897–2908 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gavriluţ, A., Iosif, A., Croitoru, A.: The Gould integral in Banach lattices. Positivity 19(1), 65–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gregori, V., Miñana, J.-J., Morillas, S., Sapena, A.: Cauchyness and convergence in fuzzy metric spaces. Rev. Real Acad. Cienc. Exact. Fís. Natur. Ser. A Mat. 111(1), 25–37 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grigorovici, A., Băcăiţă, E.S., Păun, V.P., Grecea, C., Butuc, I., Agop, M., Popa, O.: Pairs generating as a consequence of the fractal entropy: theory and applications. Entropy 19, 128 (2017). https://doi.org/10.3390/e19030128

    Article  Google Scholar 

  25. Gudder, S.: Quantum measure and integration theory. J. Math. Phys. 50, 123509 (2009). https://doi.org/10.1063/1.3267867

    Article  MathSciNet  MATH  Google Scholar 

  26. Gudder, S.: Quantum integrals and anhomomorphic logics, arXiv: quant-ph (0911.1572) (2009)

    Google Scholar 

  27. Gudder, S.: Quantum measure theory. Math. Slovaca 60, 681–700 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gudder, S.: Quantum measures and the coevent interpretation. Rep. Math. Phys. 67, 137–156 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gudder, S.: Quantum measures and integrals, arXiv:1105.3781 (2011)

    Google Scholar 

  30. Hartle, J.B.: The quantum mechanics of cosmology. In: Lectures at Winter School on Quantum Cosmology and Baby Universes, Jerusalem, Israel, Dec 27, 1990–Jan 4, 1990 (1990)

    Google Scholar 

  31. Hartle, J.B.: Spacetime quantum mechanics and the quantum mechanics of spacetime. In: Zinn-Justin, J., Julia, B. (eds.) Proceedings of the Les Houches Summer School on Gravitation and Quantizations, Les Houches, France, 6 Jul–1, Aug 1992. North-Holland, Amsterdam (1995), arXiv:gr-qc/9304006

    Google Scholar 

  32. Iannaccone, P.M., Khokha, M.: Fractal Geometry in Biological Systems: An Analitical Approach. CRC Press, New York (1995)

    Google Scholar 

  33. Jaynes, E.T.: The well posed problem. Found. Phys. 3, 477–493 (1973)

    Article  MathSciNet  Google Scholar 

  34. Khare, M., Singh, A.K.: Atoms and Dobrakov submeasures in effect algebras. Fuzzy Sets Syst. 159(9), 1123–1128 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, J., Mesiar, R., Pap, E.: Atoms of weakly null-additive monotone measures and integrals. Inf. Sci. 257, 183–192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, J., Mesiar, R., Pap, E., Klement, E.P.: Convergence theorems for monotone measures. Fuzzy Sets Syst. 281, 103–127 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mandelbrot, B.B.: The Fractal Geometry of Nature, Updated and augm. edn. W.H. Freeman, New York (1983)

    Book  Google Scholar 

  38. Mazilu, N., Agop, M.: Skyrmions. A Great Finishing Touch to Classical Newtonian Philosophy. World Philosophy Series. Nova Science Publishers, New York (2011)

    Google Scholar 

  39. Mercheş, I., Agop, M.: Differentiability and Fractality in Dynamics of Physical Systems. World Scientific, Singapore (2015)

    Book  MATH  Google Scholar 

  40. Mesiar, R., Li, J., Ouyang, Y.: On the equality of integrals. Inf. Sci. 393, 82–90 (2017)

    Article  Google Scholar 

  41. Michel, O.D., Thomas, B.G.: Mathematical Modeling for Complex Fluids and Flows. Springer, New York (2012)

    MATH  Google Scholar 

  42. Mihăileanu, M.: Differential, Projective and Analytical Geometry (in Romanian). Didactic and Pedagogical Publishing House, Bucharest (1972)

    Google Scholar 

  43. Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  44. Nottale, L.: Scale Relativity and Fractal Space-Time. A New Approach to Unifying Relativity and Quantum Mechanics. Imperial College Press, London (2011)

    Book  MATH  Google Scholar 

  45. Ouyang, Y., Li, J., Mesiar, R.: Relationship between the concave integrals and the pan-integrals on finite spaces. J. Math. Anal. Appl. 424, 975–987 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pap, E.: The range of null-additive fuzzy and non-fuzzy measures . Fuzzy Sets Syst. 65(1), 105–115 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pap, E.: Null-additive Set Functions. Mathematics and its Applications, vol. 337. Springer, Berlin (1995)

    Google Scholar 

  48. Pap, E.: Some Elements of the Classical Measure Theory. Chapter 2 in Handbook of Measure Theory, pp. 27–82. Elsevier, Amsterdam (2002)

    Chapter  MATH  Google Scholar 

  49. Pap, E., Gavriluţ, A., Agop, M.: Atomicity via regularity for non-additive set multi functions. Soft Comput. (Foundations) 20, 4761–4766 (2016). https://doi.org/10.1007/s00500-015-2021-x

    Article  MATH  Google Scholar 

  50. Phillips, A.C.: Introduction to Quantum Mechanics. Wiley, New York (2003)

    Google Scholar 

  51. Rao, K.P.S.B., Rao, M.B.: Theory of Charges. Academic, New York (1983)

    MATH  Google Scholar 

  52. Salgado, R.: Some identities for the q-measure and its generalizations. Mod. Phys. Lett. A 17, 711–728 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier Science, New York (1983). Republished in 2005 by Dover Publications, Inc., with a new preface, errata, notes, and supplementary references

    Google Scholar 

  54. Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3128 (1994), arXiv:gr-qc/9401003

    Article  MathSciNet  MATH  Google Scholar 

  55. Sorkin, R.D.: Quantum measure theory and its interpretation. In: Feng, D.H., Hu, B.-L. (eds.) Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Non-integrability, pp. 229–251. International Press, Cambridge (1997)

    Google Scholar 

  56. Sorkin, R.: Quantum dynamics without the wave function. J. Phys. A Math. Theor. 40, 3207–3231 (2007)

    Article  MATH  Google Scholar 

  57. Surya, S., Waldlden, P.: Quantum covers in q-measure theory, arXiv: quant-ph 0809.1951 (2008)

    Google Scholar 

  58. Susskind, L.: Copenhagen vs Everett teleportation, and ER ≡ EPR, arXiv: 1604.02589v2 (23 April 2016)

    Google Scholar 

  59. Susskind, L.: ER ≡ EPR,GHZ, and the consistency of quantum measurements. Fortsch. Phys. 64, 72 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Suzuki, H.: Atoms of fuzzy measures and fuzzy integrals. Fuzzy Sets Syst. 41, 329–342 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wu, C., Bo, S.: Pseudo-atoms of fuzzy and non-fuzzy measures. Fuzzy Sets Syst. 158, 1258–1272 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gavriluţ, A., Mercheş, I., Agop, M. (2019). Extended atomicity through non-differentiability and its physical implications. In: Atomicity through Fractal Measure Theory. Springer, Cham. https://doi.org/10.1007/978-3-030-29593-6_10

Download citation

Publish with us

Policies and ethics