Skip to main content

Part of the book series: Foundations in Signal Processing, Communications and Networking ((SIGNAL,volume 22))

  • 390 Accesses

Abstract

While Chaps. 3 and 4 discuss ergodic robust beamforming, which implies a fast-fading channel model, this chapter focuses on slower fading. The coherence time shall be in the range of the transmit phase, such that the channel is either quasistatic or each transmit code word experiences only a few channel realizations. Transmitter CSI can still be imperfect, e.g., due to limited feedback and delayed CSI usage. In this case, non-robust transmit strategies are unable to ensure reliable data transmission—an unknown number of outages occur when the transmitter sends information at the imposed rates. An outage defines the event that the channel is too bad to decode error-free at the transmit data rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The formulation is short hand for the probability \(\Pr (\mathcal {A}_j({\boldsymbol {x}}))\) with respect to the distribution of ξ.

  2. 2.

    The emphasis is here on probability constraints for scalar stochastic inequalities (5.5), because the downlink beamformer design considers unicast data transmission to independent receivers. An analysis of chance constraints based on vector inequalities is provided by [254, Chapter 4].

  3. 3.

    The references assume a j(x) = x for the Probabilistically constrained linear inequality (5.10).

  4. 4.

    Generalized concavity theory is an utmost important tool for analyzing probability constraints, because the CDF of a random variable with an α-concave PDF is a quasiconcave function under mild restrictions on the concavity parameter α. The theory for this result and further analysis on concave probability measures for stochastic programming is provided by [254, Chapter 4].

  5. 5.

    Wang [36] provides a summary on chance constrained programming for downlink optimization.

  6. 6.

    Lorentz positive maps (LPMs) are linear mappings of vectors from a SOC into vectors of another SOC.

  7. 7.

    A related bound for positive semidefinite \(\boldsymbol {Q}({\boldsymbol {x}})\in \mathcal {S}_+\) is found in [268].

  8. 8.

    A similar 𝜖-outage rate expression (5.18) is also valid for vector PtP channels and additive fading, e.g., see [1, Section 5.4.2] for the multi-antenna receiver and [201] for the multi-antenna transmitter case.

  9. 9.

    Chalise et al. [263] alternatively modeled the sample mean of the SINR with (5.10).

  10. 10.

    Here, \(\Pr (\xi _k=-1)=0\) and the noise variance is without loss of generality set to \(\sigma _k^2=1\).

  11. 11.

    The basis for this integral representation is the relation of the non-central chi-square distribution to the Marcum-Q function [278]. An alternative series expansion in terms of central chi-square distributions in Sect. A.8 follows from [203, Equation 26.4.25].

  12. 12.

    The probability is positive only if B k has a positive eigenvalue and otherwise it is zero.

  13. 13.

    Imhof’s method and references to integral representations are also found in [281, Chapter 4].

  14. 14.

    Adaptive rate control mechanisms are another method to decrease the conservatism in communication systems in favor for performance gains if fast feedback of single bits is available.

  15. 15.

    The set-valued mapping particularly satisfies \(\lim _{n\to \infty }\mathcal {T}(\boldsymbol {p}^{(n)},\sigma _k^2)\to \mathcal {T}(\boldsymbol {p}^\star ,\sigma _k^2)\) if p is the limit point of p (n) for n →, where convergence is in the Kuratowski–Painlevé sense [287].

  16. 16.

    Generally, continuity in probability means that \(\lim _{n\to \infty }\Pr (\mathcal {A}_n)=\Pr (\mathcal {A}^\ast )\) for any increasing sequence of events \(\mathcal {A}_n\subseteq \ldots \subseteq \mathcal {A}_1\) with convergence set \(\mathcal {A}^\ast \) and \(\lim _{n\to \infty }\Pr (\mathcal {B}_n)=\Pr (\mathcal {B}^\ast )\) for any decreasing sequence of events \(\mathcal {B}_n\supset \ldots \supset \mathcal {B}_1\) with convergence set \(\mathcal {B}^\ast \). If the sequences of sets \(\mathcal {A}_n\) and \(\mathcal {B}_n\) converge in the Kuratowski–Painlevé sense, this results in the above convergence behavior in probability [287].

  17. 17.

    Here, p is normalized to \({\mathbf {1}}^{\operatorname {T}}\boldsymbol {p}=1\) due to the scale-invariance of p kI k(p; ρ k).

  18. 18.

    This model is obtained when approximating the Gaussian additive channel error as in Sect. 2.3.

  19. 19.

    A reformulation into the LPM (5.60) misses for the orthogonal channel uncertainty region.

  20. 20.

    This single user rate maximization problem has an equivalent convex reformulation.

  21. 21.

    Even though distinct rate targets do not change this relation between the orthogonal and the spherical uncertainty approximation for the chance constraints. Section 5.7.3 shows that the orthogonal uncertainty approximation outperforms the spherical bound also for ρ 1 = 1.25 and ρ 2 = 0.75 if K = 2 for example.

  22. 22.

    Investigations on a tractable but close to optimal parameter search is an open topic for research.

  23. 23.

    Again, the SDR method for the spherical uncertainty approximation provides higher outage values than the LPM formulation due to the additional approximation (cf. Sect. 5.5).

  24. 24.

    The dominant positive eigenvalue of \(\boldsymbol {A}\in \mathcal {H}^N_+\) is bounded as \(N^{-1/2}\|\boldsymbol {A}_k\|{ }_{\operatorname {F}}\leq \lambda _{\max }^+(\boldsymbol {A}_k)\leq \|\boldsymbol {A}\|{ }_{\operatorname {F}}\).

  25. 25.

    When the RB problem becomes infeasible due to the approximation, ρ is set to zero.

References

  1. D. Tse, P. Viswanath, Fundamentals of Wireless Communications, 4th edn. (Cambridge University Press, New York, NY, 2008)

    MATH  Google Scholar 

  2. M. Schubert, H. Boche, QoS-based resource allocation and transceiver optimization. Found. Trends Commun. Inf. Theory 2(6), 383 (2005)

    Google Scholar 

  3. E. Karipidis, N. Sidiropoulos, Z.Q. Luo, Quality of service and max-min fair transmit beamforming to multiple cochannel multicast groups. IEEE Trans. Signal Process. 56(3), 1268 (2008)

    Google Scholar 

  4. D. Christopoulos, S. Chatzinotas, B. Ottersten, Weighted fair multicast multigroup beamforming under per-antenna power constraints. IEEE Trans. Signal Process. 62(19), 5132 (2014)

    Google Scholar 

  5. A. Avestimehr, D. Tse, Outage capacity of the fading relay channel in the low-SNR regime. IEEE Trans. Inf. Theory 53(4), 1401 (2007)

    Google Scholar 

  6. S. Vorobyov, H. Chen, A. Gershman, On the relationship between robust minimum variance beamformers with probabilistic and worst-case distortionless response constraints. IEEE Trans. Signal Process. 56(11), 5719 (2008)

    Google Scholar 

  7. K.Y. Wang, A.C. So, T.H. Chang, W.K. Ma, C.Y. Chi, Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization. IEEE Trans. Signal Process. 62(21), 5690 (2014)

    Google Scholar 

  8. N. Vučić, H. Boche, A tractable method for chance-constrained power control in downlink multiuser MISO systems with channel uncertainty. IEEE Signal Process. Lett. 16(5), 346 (2009)

    Google Scholar 

  9. M. Botros Shenouda, L. Lampe, Quasi-convex designs of max-min linear BC precoding with outage QoS constraints, in Proceedings of the 6th International Symposium on Wireless Communication Systems ISWCS (2009), pp. 156–160

    Google Scholar 

  10. X. He, Y.C. Wu, Probabilistic QoS Constrained robust downlink multiuser MIMO transceiver design with arbitrarily distributed channel uncertainty. IEEE Trans. Wirel. Commun. 12(12), 6292 (2013)

    Google Scholar 

  11. R.D. Yates, A framework for uplink power control in cellular radio systems. IEEE J. Sel. Areas Commun. 13(7), 1341 (1995)

    Google Scholar 

  12. N. Vučić, M. Schubert, Fixed point iteration for max-min SIR balancing with general interference functions, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 3456–3459

    Google Scholar 

  13. S. Kandukuri, S. Boyd, Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Trans. Wirel. Commun. 1(1), 46 (2002)

    Google Scholar 

  14. K. Toh, R. Tütüncü, M. Todd, SDPT3—a matlab software package for semidefinite programming. Optim. Methods Softw. 11(1), 545 (1999)

    Google Scholar 

  15. M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming (2009), http://stanford.edu/~boyd/cvx

  16. A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001)

    Google Scholar 

  17. A. Gershman, N. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, B. Ottersten, Convex optimization-based beamforming. IEEE Signal Process. Mag. 27(3), 62 (2010)

    Google Scholar 

  18. Y. Huang, D. Palomar, S. Zhang, Lorentz-positive maps and quadratic matrix inequalities with applications to robust MISO transmit beamforming. IEEE Trans. Signal Process. 61(5), 1121 (2013)

    Google Scholar 

  19. H. Wolkowicz, R. Saigal, L. Vandenberghe, Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, 1st edn. (Kluwer, Norwell, MS, 2000)

    Book  Google Scholar 

  20. R. Henrion. Introduction to chance constrained programming. Introduction Tutorial in E-Collection https://stoprog.org (2003), https://stoprog.org

  21. M. Shenouda, T. Davidson, Probabilistically-constrained approaches to the design of the multiple antenna downlink, in Proceedings of the 42nd Asilomar Conference on Signals, Systems, and Computers (2008), pp. 1120–1124

    Google Scholar 

  22. A. Gründinger, R. Bethenod, M. Joham, M. Riemensberger, W. Utschick, Optimal power allocation for the chance-constrained vector broadcast channel and rank-one channel approximation, in Proceedings of the 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2013), pp. 31–35

    Google Scholar 

  23. S. Vorobyov, Y. Rong, A. Gershman, Robust adaptive beamforming using probability-constrained optimization, in IEEE/SP 13th Workshop on Statistical Signal Processing (2005), pp. 934–939

    Google Scholar 

  24. A. Mutapcic, S.J. Kim, S. Boyd, A tractable method for robust downlink beamforming in wireless communications, in Proceedings of the 41st Asilomar Conference on Signals, Systems, and Computers (2007), pp. 1224–1228

    Google Scholar 

  25. N. Vučić, H. Boche, Robust QoS-constrained optimization of downlink multiuser MISO systems. IEEE Trans. Signal Process. 57(2), 714 (2009)

    Google Scholar 

  26. I. Bechar, A Bernstein-type inequality for stochastic processes of quadratic forms Gaussian variables (2009). https://arxiv.org/abs/0909.3595

  27. J.P. Imhof, Computing the distribution of quadratic forms in normal variables. Biometrika 48(3/4), 419 (1961)

    Google Scholar 

  28. K. Mukkavilli, A. Sabharwal, E. Erkip, B. Aazhang, On beamforming with finite rate feedback in multiple-antenna systems. IEEE Trans. Inf. Theory 49(10), 2562 (2003)

    Google Scholar 

  29. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 1st edn. (Dover, New York, 1964)

    MATH  Google Scholar 

  30. H.O. Georgii, Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik, 4th edn. (De Gruyter, Berlin, 2009)

    Book  Google Scholar 

  31. D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, MA, 1999)

    Google Scholar 

  32. J. Gorski, F. Pfeuffer, K. Klamroth, Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res. 66(3), 373 (2007)

    Google Scholar 

  33. A. Sharpio, D. Dentcheva, A. Ruszczyński, Lectures on Stochastic Programming (Society for Industrial and Applied Mathematics, Philadelphia, 2009)

    Google Scholar 

  34. L. Ozarow, S. Shamai, A. Wyner, Information theoretic considerations for cellular mobile radio. IEEE Trans. Veh. Technol. 43(2), 359 (1994)

    Google Scholar 

  35. A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization. Princeton Series in Applied Mathematics (Princeton University Press, Princeton, 2009)

    Google Scholar 

  36. C.M. Lagoa, X. Li, M. Sznaier, Probabilistically constrained linear programs and risk-adjusted controller design. SIAM J. Optim. 15(3), 938 (2005)

    Google Scholar 

  37. R. Henrion, Structural properties of linear probabilistic constraints. Optimization 56(4), 425 (2007)

    Google Scholar 

  38. D. Raphaeli, Distribution of noncentral indefinite quadratic forms in complex normal variables. IEEE Trans. Inf. Theory 42(3), 1002 (1996)

    Google Scholar 

  39. T. Al-Naffouri, B. Hassibi, On the distribution of indefinite quadratic forms in Gaussian random variables, in Proceedings of the IEEE International Symposium on Information Theory ISIT (2009), pp. 1744–1748

    Google Scholar 

  40. B. Chalise, S. Shahbazpanahi, A. Czylwik, A. Gershman, Robust downlink beamforming based on outage probability specifications. IEEE Trans. Wirel. Commun. 6(10), 3498 (2007)

    Google Scholar 

  41. X. He, Y.C. Wu, Tight probabilistic MSE constrained multiuser MISO transceiver design under channel uncertainty, in Proceedings of the IEEE International Conference on Communications ICC (2015)

    Google Scholar 

  42. D. Bertsimas, M. Sim, Tractable approximations to robust conic optimization problems. Math. Program. 107, 5 (2006)

    Article  MathSciNet  Google Scholar 

  43. R. Hildebrand, An LMI description for the cone of Lorentz-positive maps. Linear Multilinear Algebra 55(6), 551 (2007)

    Google Scholar 

  44. R. Hildebrand, Linear Multilinear Algebra 59(7), 719 (2011)

    Article  MathSciNet  Google Scholar 

  45. D. Hsu, S. Kakade, T. Zhang, An LMI description for the cone of Lorentz-positive maps II. Electron. Commun. Probab. 17(52), 1 (2012)

    Google Scholar 

  46. P. Massart, Concentration Inequalities and Model Selection. Lecture Notes in Mathematics, vol. 1896 (Springer, Berlin/Heidelberg, 2007)

    Google Scholar 

  47. A. Ben-Tal, A. Nemirovski, On safe tractable approximations of chance-constrained linear matrix inequalities. Math. Oper. Res. 34(1), 1 (2009)

    Google Scholar 

  48. N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions. Wiley Series in Probability and Mathematical Statistics, vol. 2, 2nd edn. (Wiley, New York, NY, 1995)

    Google Scholar 

  49. L. Xu, K. Wong, J.K. Zhang, D. Ciochina, M. Pesavento, A Riemannian distance for robust downlink beamforming, in Proceedings of the 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2013), pp. 465–469

    Google Scholar 

  50. J. Lindblom, E. Karipidis, E. Larsson, Outage rate regions for the MISO IFC, in Proceedings of the 43rd Asilomar Conference on Signals, Systems, and Computers (2009), pp. 1120–1124

    Google Scholar 

  51. C. Lin, C.J. Lu, W.H. Chen, Outage-constrained coordinated beamforming with opportunistic interference cancellation. IEEE Trans. Signal Process. 62(16), 4311 (2014)

    Google Scholar 

  52. N. Zlatanov, Z. Hadzi-Velkov, G. Karagiannidis, R. Schober, Cooperative diversity with mobile nodes: capacity outage rate and duration. IEEE Trans. Inf. Theory 57(10), 6555 (2011)

    Google Scholar 

  53. A. Gründinger, L. Gerdes, M. Joham, W. Utschick, Bounds on the outage constrained capacity of the Gaussian relay channel, in Communications in Interference Limited Networks (Springer, New York, 2016)

    Google Scholar 

  54. R. Di Taranto, P. Popovski, Outage performance in cognitive radio systems with opportunistic interference cancelation. IEEE Trans. Wirel. Commun. 10(4), 1280 (2011)

    Google Scholar 

  55. A. Nuttall, Some integrals involving the Marcum-Q function. IEEE Trans. Inf. Theory 21(1), 95 (1975)

    Google Scholar 

  56. D. Benton, K. Krishnamoorthy, Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t, and the distribution of the square of the sample multiple correlation coefficient. Comput. Stat. Data Anal. 43(2), 249 (2003)

    Google Scholar 

  57. M. Kang, M.S. Alouini, Quadratic forms in complex Gaussian matrices and performance analysis of MIMO systems with cochannel interference. IEEE Trans. Wirel. Commun. 3(2), 418 (2004)

    Google Scholar 

  58. A. Mathai, S. Provost (eds.), Quadratic Forms in Random Variables: Theory and Applications. Statistics: Textbooks and Monographs, vol. 126 (Marcel Dekker, New York, 1992). Various authors

    Google Scholar 

  59. B.K. Shah, Distribution of definite and of indefinite quadratic forms from a non-central normal distribution. Ann. Math. Stat. 34(1), 186 (1963)

    Google Scholar 

  60. S.J. Press, Linear combinations of non-central Chi-square variates. Ann. Math. Stat. 37(2), 480 (1966)

    Google Scholar 

  61. J. Gil-PeLaez, Note on the inversion theorem. Biometrika 38(3–4), 481 (1951)

    Google Scholar 

  62. P. Duchesne, P.L. De Micheaux, Computing the distribution of quadratic forms: further comparisons between the Liu–Tang–Zhang approximation and exact methods. Comput. Stat. Data Anal. 54(4), 858 (2010)

    Google Scholar 

  63. R. Henrion, C. Strugarek, Convexity of chance constraints with independent random variables. Comput. Optim. Appl. 41(2), 263 (2008)

    Google Scholar 

  64. R. Lucchetti, G. Salinetti, Uniform convergence of probability measures: topological criteria. J. Multivar. Anal. 51(2), 254 (1994)

    Google Scholar 

  65. M. Payaró, A. Pascual-Iserte, M. Lagunas, Robust power allocation designs for multiuser and multiantenna downlink communication systems through convex optimization. IEEE J. Sel. Areas Commun. 25(7), 1390 (2007)

    Google Scholar 

  66. A. Shaverdian, M. Nakhai, Robust distributed beamforming with interference coordination in downlink cellular networks. IEEE Trans. Commun. 62(7), 2411 (2014)

    Google Scholar 

  67. D. Bertsimas, D. Brown, C. Caramanis, Theory and applications of robust optimization. SIAM Rev. 53(3), 464 (2011)

    Google Scholar 

  68. E. Song, Q. Shi, M. Sanjabi, R. Sun, Z.Q. Luo, Robust SINR-constrained MISO downlink beamforming: when is semidefinite programming relaxation tight?, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 3096–3099

    Google Scholar 

  69. G. Zheng, K.K. Wong, B. Ottersten, Robust cognitive beamforming with bounded channel uncertainties. IEEE Trans. Signal Process. 57(12), 4871 (2009)

    Google Scholar 

  70. R.W. Cottle, Manifestations of the Schur complement. Linear Algebra Appl. 8(3), 189 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gründinger, A. (2020). Outage Constrained Beamformer Design. In: Statistical Robust Beamforming for Broadcast Channels and Applications in Satellite Communication. Foundations in Signal Processing, Communications and Networking, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-29578-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29578-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29577-6

  • Online ISBN: 978-3-030-29578-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics