Skip to main content

Part of the book series: Foundations in Signal Processing, Communications and Networking ((SIGNAL,volume 22))

  • 428 Accesses

Abstract

Simultaneous wireless transmission from a single multi-antenna transmitter, e.g., a base station or a satellite, to K receivers—the users—is a standard model for terrestrial and satellite communication (SatCom) (Tse and Viswanath, Fundamentals of wireless communications. Cambridge University Press, New York, NY, 2008; Arapoglou et al., IEEE Commun Surv Tutorials 13:27, 2011). This multi-user downlink model is also known as a broadcast channel (BC) (e.g., see Tse and Viswanath (Fundamentals of wireless communications. Cambridge University Press, New York, NY, 2008)). The transmitter forms its transmit signal from independent data that are simultaneously conveyed to the users (Cover and Thomas, Elements of information theory. Wiley, Hoboken, NJ, 2006). Therefore, a terminal’s received signal not only includes the intended data signal, but also interfering signals that are destined to other terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is in contrast to multicast setups, where all users receive the same information.

  2. 2.

    Lately, a DPC type scheme was proposed for block fading single antenna channels [8]. However, as extensions to multi-antenna setups are missing, this approach is beyond the scope of this work.

  3. 3.

    Further literature on multi-user downlink beamformer optimizations with ergodic rates and the related MSE or outage probability metrics is provided in the contributions section, i.e., Sect. 1.5, and at the beginning of Chaps. 3 and 4 or Chap. 5, respectively.

  4. 4.

    See the book by Li and Stoica [40], the book by Dietrich [41], and Chaps. 35 for more early references on robust beamforming for wireless communications.

  5. 5.

    The source for the plot is IEEEXplore and available online via ieeexplore.ieee.org. The following journals have been selected: IEEE Transactions on Signal Processing, IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Vehicular Technology, IEEE Selected Topics in Signal Processing, IEEE Selected Topics in Communications, IEEE Signal Processing Letters, IEEE Communications Letters.

  6. 6.

    Interference becomes severe if the frequency reuse is one, i.e., the same bands are used in all cells.

  7. 7.

    Alternatively, the inputs may also be modeled as complex circularly symmetric Gaussian vectors , k = 1, …, K. However, the optimal transmit covariance matrices Q k of the intended problems are rank-one if sufficiently accurate CSI is available at the transmitter [18].

  8. 8.

    The advantageous use of the MSE and the MMSE compared to the rate and the SINR is especially for QoS feasibility and imperfect transmitter CSI as will be detailed in Sect. 1.2 and Chap. 4.

  9. 9.

    A precoder t is feasible if there is a p ≥ 0 such that \(p^{-1}\boldsymbol {t}\in \mathcal {P}\) and \(\boldsymbol {r}(\boldsymbol {t})\in \mathcal {R}\).

  10. 10.

    See Sect. A.1 for more detailed discussions to the basic properties of (1.12).

  11. 11.

    Detailed reviews on this topic are also provided by Schubert and Boche [11, 67, 83].

  12. 12.

    This fixed point map is also known as Picard iteration [86, Secion 1.2]. This reference also shows other iteration procedures with superior convergence that focus more on stability and contraction. The restriction to (1.18) for this work is due to its simplicity and variability for power allocation.

  13. 13.

    The mathematical basis for conic optimization, the generalized inequality formulations, and the corresponding interior point methods is amongst others due to Nesterov and Nemirovski [100]. A brief tutorial on conic optimization can be found in [101], for example, and more detailed introductions and applications are provided by Boyd and Ben-Tal in their study books [102, 103].

  14. 14.

    This corresponds to a relaxation of the rank-one conditions to \(\operatorname {rank}(\boldsymbol {Q}_i)\leq N\).

  15. 15.

    This stochastic interpretation of the above substitution and relaxation for the quadratic terms results from \(\operatorname {tr}(\boldsymbol {Q}_k\boldsymbol {R})=\operatorname {E}_{\boldsymbol {\tau }_k}[\boldsymbol {\tau }_k^{\operatorname {H}}\boldsymbol {R}\boldsymbol {\tau }_k]\) for Gaussian vectors (e.g., see [109]).

  16. 16.

    This is in contrast to the non-linear DPC case, where any finite rate targets are reachable [83].

  17. 17.

    Whether (1.18) is contractive or not depends on the system realization (cf. [112, Theorem 2]).

  18. 18.

    If \(\exists \mathcal {I}\subseteq \{1,\ldots ,K\}:\operatorname {rank}\{\boldsymbol {H}_{\mathcal {I}}\}<\min \{N,|\mathcal {I}|\}\), the matrix H is singular [115, Section III.C].

  19. 19.

    This table is not meant to be complete. Similar dualities may be found in other works as well.

  20. 20.

    We obtain these average SINRs by independently taking the mean of the nominator and the denominator if only second order channel information is available. These measures are commonly employed in the literature, even though they provide neither a lower nor an upper bound for R k.

  21. 21.

    Surrogate constrained programming is an approach to employ multiplier and duality theory for quasiconvex optimizations with multiple inequality constraints [123], where the standard Lagrangian duality theory does not generally apply. For the surrogate primal problem, the convex inequality constraints are linearly combined to a single scalar inequality constraint (cf. [122, 124]). The corresponding weights are the surrogate multipliers. This formulation allows for a simplified notion of duality.

  22. 22.

    The downlink is especially interesting due to the imposed correlations between the intended signal power and the interference within the users’ SINRs. Both signal parts are distorted by the same fading channels. This is in contrast to the Multiple access channel (MAC) and Interference channel (IFC), where the distortions of the interference and the useful signal are independent (e.g., see [110,111,127]).

  23. 23.

    ZF beamforming for only a part of the receivers can help to reduce the computational complexity, which is especially interesting if the number of antennas N and users K are large and N ≥ K.

  24. 24.

    These closed-form expressions were originally derived for the related MIMO models [157, 158].

  25. 25.

    Even though the shown ACS considers only imperfect transmitter CSI, i.e., the receivers employ perfect CSI equalizers, the duality is also valid for imperfect transmitter and receivers CSI (cf. [116]).

  26. 26.

    Examples of such stringent limitations are low power constraints and interference temperature constraints that set a threshold on the generated interference in a cognitive radio system [165].

  27. 27.

    Interference becomes severe for frequency reuse one as the same bands are used in all the cells.

References

  1. D. Tse, P. Viswanath, Fundamentals of Wireless Communications, 4th edn. (Cambridge University Press, New York, NY, 2008)

    MATH  Google Scholar 

  2. P.D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis, R. De Gaudenzi, MIMO over satellite: a review. IEEE Commun. Surv. Tutorials 13(1), 27 (2011)

    Google Scholar 

  3. T. Cover, J. Thomas, Elements of Information Theory (Wiley Interscience, Hoboken, NJ, 2006)

    Google Scholar 

  4. M.H.M. Costa, Writing on dirty paper (Corresp). IEEE Trans. Inf. Theory 29(3), 439 (1983)

    Google Scholar 

  5. P. Viswanath, D.N.C. Tse, Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality. IEEE Trans. Inf. Theory 49(8), 1912 (2003)

    Google Scholar 

  6. H. Weingarten, Y. Steinberg, S. Shamai, The capacity region of the Gaussian multiple-input multiple-output broadcast channel. IEEE Trans. Inf. Theory 52(9), 3936 (2006)

    Google Scholar 

  7. A. Goldsmith, S. Jafar, N. Jindal, S. Vishwanath, Capacity limits of MIMO channels. IEEE J. Sel. Areas Commun. 21(5), 684 (2003)

    Google Scholar 

  8. W. Zhang, S. Kotagiri, J. Laneman, On downlink transmission without transmit channel state information and with outage constraints. IEEE Trans. Inf. Theory 55(9), 4240 (2009)

    Google Scholar 

  9. F.A. Dietrich, P. Breun, W. Utschick, Robust Tomlinson Harashima precoding for the wireless broadcast channel. IEEE Trans. Signal Process. 55(2), 631 (2007)

    Google Scholar 

  10. F. Rashid-Farrokhi, K. Liu, L. Tassiulas, Transmit beamforming and power control for cellular wireless systems. IEEE J. Sel. Areas Commun. 16(8), 1437 (1998)

    Google Scholar 

  11. M. Schubert, H. Boche, QoS-based resource allocation and transceiver optimization. Found. Trends Commun. Inf. Theory 2(6), 383 (2005)

    Google Scholar 

  12. E. Karipidis, N. Sidiropoulos, Z.Q. Luo, Quality of service and max-min fair transmit beamforming to multiple cochannel multicast groups. IEEE Trans. Signal Process. 56(3), 1268 (2008)

    Google Scholar 

  13. D. Christopoulos, S. Chatzinotas, B. Ottersten, Weighted fair multicast multigroup beamforming under per-antenna power constraints. IEEE Trans. Signal Process. 62(19), 5132 (2014)

    Google Scholar 

  14. M. Hanif, L.N. Tran, A. Tölli, M. Juntti, S. Glisic, Efficient solutions for weighted sum rate maximization in multicellular networks with channel uncertainties. IEEE Trans. Signal Process. 61(22), 5659 (2013)

    Google Scholar 

  15. W. Utschick, J. Brehmer, Monotonic optimization framework for coordinated beamforming in multi-cell networks. IEEE Trans. Signal Process. 59(99) (2011)

    Google Scholar 

  16. M. Rossi, A. Tulino, O. Simeone, A. Haimovich, Non-convex utility maximization in Gaussian MISO broadcast and interference channels, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 2960–2963

    Google Scholar 

  17. E. Björnson, G. Zheng, M. Bengtsson, B. Ottersten, Robust monotonic optimization framework for multicell MISO systems. IEEE Trans. Signal Process. 60(5), 2508 (2012)

    Google Scholar 

  18. S. Srinivasa, S. Jafar, The optimality of transmit beamforming: a unified view. IEEE Trans. Inf. Theory 53(4), 1558 (2007)

    Google Scholar 

  19. E. Larsson, E. Jorswieck, Competition versus cooperation on the MISO interference channel. IEEE J. Sel. Areas Commun. 26(7), 1059 (2008)

    Google Scholar 

  20. E. Larsson, F. Tufvesson, O. Edfors, T. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186 (2014)

    Google Scholar 

  21. D. Neumann, A. Gründinger, M. Joham, W. Utschick, Rate-balancing in massive MIMO using statistical precoding, in Proceedings of the 14th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2015), pp. 226–230

    Google Scholar 

  22. E. Chiu, V. Lau, S. Zhang, B. Mok, Precoder design for multi-antenna partial decode-and-forward (PDF) cooperative systems with statistical CSIT and MMSE-SIC receivers. IEEE Trans. Wirel. Commun. 11(4), 1343 (2012)

    Google Scholar 

  23. P. Wu, R. Schober, Cooperative beamforming for single-carrier frequency-domain equalization systems with multiple relays. IEEE Trans. Wirel. Commun. 11(6), 2276 (2012)

    Google Scholar 

  24. M. Kang, M.S. Alouini, Capacity of correlated MIMO Rayleigh channels. IEEE Trans. Wirel. Commun. 5(1), 143 (2006)

    Google Scholar 

  25. M. Matthaiou, G. Alexandropoulos, H.Q. Ngo, E. Larsson, Analytic framework for the effective rate of MISO fading channels. IEEE Trans. Commun. 60(6), 1741 (2012)

    Google Scholar 

  26. N. Beaulieu, J. Hu, A closed-form expression for the outage probability of decode-and-forward Relaying in dissimilar Rayleigh fading channels. IEEE Commun. Lett. 10(12), 813 (2006)

    Google Scholar 

  27. A. Moustakas, S. Simon, On the outage capacity of correlated multiple-path MIMO channels. IEEE Trans. Inf. Theory 53(11), 3887 (2007)

    Google Scholar 

  28. D. Kontaxis, G. Tsoulos, S. Karaboyas, Ergodic capacity optimization for single-stream beamforming transmission in MISO Rician fading channels. IEEE Trans. Veh. Technol. 62(2), 628 (2013)

    Google Scholar 

  29. M. Razaviyayn, M.S. Boroujeni, Z.Q. Luo, A stochastic weighted MMSE approach to sum rate maximization for a MIMO interference channel, in Proceedings of the 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2013), pp. 325–329

    Google Scholar 

  30. S. Vorobyov, H. Chen, A. Gershman, On the relationship between robust minimum variance beamformers with probabilistic and worst-case distortionless response constraints. IEEE Trans. Signal Process. 56(11), 5719 (2008)

    Google Scholar 

  31. K.Y. Wang, A.C. So, T.H. Chang, W.K. Ma, C.Y. Chi, Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization. IEEE Trans. Signal Process. 62(21), 5690 (2014)

    Google Scholar 

  32. S.A. Vorobyov, A.B. Gershman, Z.Q. Luo, Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal Process. 51(2), 313 (2003)

    Google Scholar 

  33. S. Shahbazpanahi, A.B. Gershman, Z.Q. Luo, K.M. Wong, Robust adaptive beamforming for general-rank signal models. IEEE Trans. Signal Process. 51(9), 2257 (2003)

    Google Scholar 

  34. J. Li, P. Stoica, Z. Wang, On robust capon beamforming and diagonal loading. IEEE Trans. Signal Process. 51(7), 1702 (2003)

    Google Scholar 

  35. J. Li, P. Stoica (eds.), Robust Adaptive Beamforming (Wiley, New York, 2005)

    Google Scholar 

  36. F. Dietrich, Robust Signal Processing for Wireless Communications (Springer, New York, 2007)

    MATH  Google Scholar 

  37. H. Du, P.J. Chung, A probabilistic approach for robust leakage-based MU-MIMO downlink beamforming with imperfect channel state information. IEEE Trans. Wirel. Commun. 11(3), 1239 (2012)

    Google Scholar 

  38. M. Joham, P. Castro, W. Utschick, L. Castedo, Robust precoding with limited feedback design based on precoding MSE for MU-MISO systems. IEEE Trans. Signal Process. 60(6), 3101 (2012)

    Google Scholar 

  39. N. Vučić, H. Boche, A tractable method for chance-constrained power control in downlink multiuser MISO systems with channel uncertainty. IEEE Signal Process. Lett. 16(5), 346 (2009)

    Google Scholar 

  40. M. Medra, Y. Huang, W.K. Ma, T.N. Davidson, Low-complexity robust MISO downlink precoder design under imperfect CSI. IEEE Trans. Signal Process. 64(12), 3237 (2016)

    Google Scholar 

  41. N. Zorba, A. Pérez-Neira, Robust multibeam opportunistic schemes under quality of service constraints, in Proceedings of the IEEE International Conference on Communications ICC (2007), pp. 5371–5376

    Google Scholar 

  42. M. Botros Shenouda, L. Lampe, Quasi-convex designs of max-min linear BC precoding with outage QoS constraints, in Proceedings of the 6th International Symposium on Wireless Communication Systems ISWCS (2009), pp. 156–160

    Google Scholar 

  43. X. He, Y.C. Wu, Probabilistic QoS Constrained robust downlink multiuser MIMO transceiver design with arbitrarily distributed channel uncertainty. IEEE Trans. Wirel. Commun. 12(12), 6292 (2013)

    Google Scholar 

  44. D. Christopoulos, S. Chatzinotas, G. Zheng, J. Grotz, B. Ottersten, Linear and nonlinear techniques for multibeam joint processing in satellite communications. EURASIP J. Wirel. Commun. Netw. 1(162), 1 (2012)

    Google Scholar 

  45. L. Cottatellucci, M. Debbah, E. Casini, R. Rinaldo, R. Mueller, M. Neri, G. Gallinaro, Interference mitigation techniques for broadband satellite system, in Proceedings of the 24th AIAA International Communications Satellite Systems Conference ICSSC 2006 (2006)

    Google Scholar 

  46. J. Arnau, B. Devillers, C. Mosquera, A. Pérez-Neira, Performance study of multiuser interference mitigation schemes for hybrid broadband multibeam satellite architectures. EURASIP J. Wirel. Commun. Netw. 1(132), 1 (2012)

    Google Scholar 

  47. G. Zheng, S. Chatzinotas, B. Ottersten, Generic optimization of linear precoding in multibeam satellite systems. IEEE Trans. Wirel. Commun. 11(6), 2308 (2012)

    Google Scholar 

  48. X. Lei, L. Cottatellucci, S. Ghanem, Adaptive beamforming in mobile, massively multiuser satellite communications: a system perspective, in Proceedings of the 13th International Workshop on Signal Processing for Space Communications SPSC (2014), pp. 51–58

    Google Scholar 

  49. P.D. Arapoglou, E. Michailidis, A. Panagopoulos, A. Kanatas, R. Prieto-Cerdeira, The land mobile earth-space channel. IEEE Veh. Technol. Mag. 6(2), 44 (2011)

    Google Scholar 

  50. B. Devillers, A. Pérez-Neira, C. Mosquera, Joint linear precoding and beamforming for the forward link of multi-beam broadband satellite systems, in Proceedings of the IEEE Global Communications Conference GLOBECOM (2011)

    Google Scholar 

  51. A. Gründinger, A. Barthelme, M. Joham, W. Utschick, Mean square error beamforming in SatCom: uplink-downlink duality with per-feed constraints, in Proceedings of the 11th International Symposium on Wireless Communication Systems ISWCS (2014), pp. 600–605

    Google Scholar 

  52. A. Gharanjik, B. Shankar, P.D. Arapoglou, M. Bengtsson, B. Ottersten, Robust precoding with phase uncertainty, in Proceedings of the 39th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2015), pp. 3083–3087

    Google Scholar 

  53. R. Hunger, M. Joham, A complete description of the QoS feasibility region in the vector broadcast channel. IEEE Trans. Signal Process. 57(7), 3870 (2010)

    Google Scholar 

  54. R. Hunger, Analysis and Transceiver Design for the MIMO Broadcast Channel. Foundations in Signal Processing, Communications and Networking, vol. 8 (Springer, Berlin/Heidelberg, 2013)

    Google Scholar 

  55. M. Schubert, H. Boche, Solution of the multiuser downlink beamforming problem with individual SINR constraints. IEEE Trans. Veh. Technol. 53(1), 18 (2004)

    Google Scholar 

  56. S. Shi, M. Schubert, H. Boche, Downlink MMSE transceiver optimization for multiuser MIMO systems: duality and sum-MSE minimization. IEEE Trans. Signal Process. 55(11), 5436 (2007)

    Google Scholar 

  57. F. Rashid-Farrokhi, L. Tassiulas, K. Liu, Joint optimal power control and beamforming in wireless networks using antenna arrays. IEEE Trans. Commun. 46(10), 1313 (1998)

    Google Scholar 

  58. M. Bengtsson, B. Ottersten, Optimal downlink beamforming using semidefinite optimization, in Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing (1999), pp. 987–996

    Google Scholar 

  59. A. Wiesel, Y. Eldar, S. Shamai, Linear precoding via conic optimization for fixed MIMO receivers. IEEE Trans. Signal Process. 54(1), 161 (2006)

    Google Scholar 

  60. W. Yu, T. Lan, Transmitter optimization for the multi-antenna downlink with per-antenna power constraints. IEEE Trans. Signal Process. 55(6), 2646 (2007)

    Google Scholar 

  61. R.D. Yates, A framework for uplink power control in cellular radio systems. IEEE J. Sel. Areas Commun. 13(7), 1341 (1995)

    Google Scholar 

  62. E. Jorswieck, H. Boche, Rate balancing for the multi-antenna Gaussian broadcast channel, in IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications, vol. 2 (2002), pp. 545–549

    Google Scholar 

  63. S. Shi, M. Schubert, H. Boche, Capacity balancing for multiuser MIMO systems, in Proceedings of the 32th International Conference on Acoustics, Speech, and Signal Processing ICASSP, vol. 3 (2007), pp. 397–400

    Google Scholar 

  64. K. Cumanan, J. Tang, S. Lambotharan, Rate balancing based linear transceiver design for multiuser MIMO system with multiple linear transmit covariance constraints, in Proceedings of the IEEE International Conference on Communications ICC (2011)

    Google Scholar 

  65. A. Tölli, M. Codreanu, M. Juntti, Linear multiuser MIMO transceiver design with quality of service and per-antenna power constraints. IEEE Trans. Signal Process. 56(7), 3049 (2008)

    Google Scholar 

  66. W. Yang, G. Xu, Optimal downlink power assignment for smart antenna systems, in Proceedings of the 23th International Conference on Acoustics, Speech, and Signal Processing ICASSP (1998), pp. 3337–3340

    Google Scholar 

  67. M. Schubert, H. Boche, A unifying theory for uplink and downlink multiuser beamforming in International Zurich Seminar on Broadband Communications, Access, Transmission, and Networking (2002), pp. 27-1–27-6

    Google Scholar 

  68. D. Tse, P. Viswanath, Downlink-uplink duality and effective bandwidths, in Proceedings of the IEEE International Symposium on Information Theory (2002), p. 52

    Google Scholar 

  69. M. Schubert, H. Boche, Iterative multiuser uplink and downlink beamforming under SINR constraints. IEEE Trans. Veh. Technol. 53(7), 2324 (2005)

    Google Scholar 

  70. J. Zander, Performance of optimum transmitter power control in cellular radio systems. IEEE Trans. Veh. Technol. 41(1), 57 (1992)

    Google Scholar 

  71. M. Hirsch, H. Smith, Chapter 4: monotone dynamical systems, in Handbook of Differential Equations: Ordinary Differential Equations, vol. 2, ed. by P.D.A. Cañada, A. Fonda (North-Holland, Amsterdam, 2006), pp. 239–357

    Chapter  Google Scholar 

  72. V. Berinde, Iterative Approximation of Fixed Points (Springer, New York, 2007)

    MATH  Google Scholar 

  73. U. Krause, P. Ranft, A limit set trichotomy for monotone nonlinear dynamical systems. Nonlinear Anal. Theory Methods Appl. 19(4), 375 (1992)

    Google Scholar 

  74. J. Zander, Distributed cochannel interference control in cellular radio systems. IEEE Trans. Veh. Technol. 41(3), 305 (1992)

    Google Scholar 

  75. M. Schubert, H. Boche, A generic approach to QoS-based transceiver optimization. IEEE Trans. Commun. 55(8), 1557 (2007)

    Google Scholar 

  76. H. Boche, M. Schubert, A superlinearly and globally convergent algorithm for power control and resource allocation with general interference functions. IEEE/ACM Trans. Netw. 16(2), 383 (2008)

    Google Scholar 

  77. M. Schubert, H. Boche, Interference Calculus. Foundations in Signal Processing, Communications and Networking, vol. 7, 1st edn. (Springer, Berlin/Heidelberg, 2012)

    Google Scholar 

  78. N. Vučić, M. Schubert, Fixed point iteration for max-min SIR balancing with general interference functions, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 3456–3459

    Google Scholar 

  79. S. Kandukuri, S. Boyd, Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Trans. Wirel. Commun. 1(1), 46 (2002)

    Google Scholar 

  80. S. Boyd, S.J. Kim, L. Vandenberghe, A. Hassibi, A tutorial on geometric programming. Optim. Eng. 8(1), 67 (2007)

    Google Scholar 

  81. M. Chiang, C. wei Tan, D. Palomar, D. O’Neill, D. Julian, Power control by geometric programming. IEEE Trans. Wirel. Commun. 6(7), 2640 (2007)

    Google Scholar 

  82. D. Cai, T. Quek, C.W. Tan, A unified analysis of max-min weighted SINR for MIMO downlink system. IEEE Trans. Signal Process. 59(8), 3850 (2011)

    Google Scholar 

  83. J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1), 625 (1999)

    Google Scholar 

  84. K. Toh, R. Tütüncü, M. Todd, SDPT3—a matlab software package for semidefinite programming. Optim. Methods Softw. 11(1), 545 (1999)

    Google Scholar 

  85. M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming (2009), http://stanford.edu/~boyd/cvx

  86. Y. Nesterov, A. Nemirovski, Interior Point Polynomial Algorithms in Convex Programming (Studies in Applied Mathematics (SIAM), Philadelphia, PA, 1994)

    Book  Google Scholar 

  87. Z.Q. Luo, W. Yu, Z.Q. Luo, W. Yu, An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 24(8), 1426 (2006)

    Google Scholar 

  88. S. Boyd, L. Vandenberghe, Convex Optimization, 1st edn. (Cambridge University Press, New York, NY, 2004)

    Book  Google Scholar 

  89. A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001)

    Google Scholar 

  90. A. Gershman, N. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, B. Ottersten, Convex optimization-based beamforming. IEEE Signal Process. Mag. 27(3), 62 (2010)

    Google Scholar 

  91. Y. Huang, D. Palomar, S. Zhang, Lorentz-positive maps and quadratic matrix inequalities with applications to robust MISO transmit beamforming. IEEE Trans. Signal Process. 61(5), 1121 (2013)

    Google Scholar 

  92. L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 3(1), 49 (1996)

    Google Scholar 

  93. H. Wolkowicz, R. Saigal, L. Vandenberghe, Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, 1st edn. (Kluwer, Norwell, MS, 2000)

    Book  Google Scholar 

  94. Y. Huang, D. Palomar, Rank-constrained separable semidefinite programming with applications to optimal beamforming. IEEE Trans. Signal Process. 58(2), 664 (2010)

    Google Scholar 

  95. Z.Q. Luo, W.K. Ma, A.C. So, Y. Ye, S. Zhang, Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20 (2010)

    Google Scholar 

  96. A. Wiesel, Y. Eldar, S. Shamai, Zero-forcing precoding and generalized inverses. IEEE Trans. Signal Process. 56(9), 4409 (2008)

    Google Scholar 

  97. M. Joham, C. Hellings, R. Hunger, QoS feasibility for the MIMO broadcast channel: robust formulation and multi-carrier systems, in Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (2010), pp. 610–614

    Google Scholar 

  98. H. Feyzmahdavian, M. Johansson, T. Charalambous, Contractive interference functions and rates of convergence of distributed power control laws. IEEE Trans. Wirel. Commun. 11(12), 4494 (2012)

    Google Scholar 

  99. H. Boche, M. Schubert, The structure of general interference functions and applications. IEEE Trans. Inf. Theory 54(11), 4980 (2008)

    Google Scholar 

  100. E. Jorswieck, B. Ottersten, A. Sezgin, A. Paulraj, Guaranteed performance region in fading orthogonal space-time coded broadcast channels. EURASIP J. Wirel. Commun. Netw. 2008(39), 1 (2008)

    Google Scholar 

  101. M. Joham, R. Hunger, Feasible rate region of the MIMO broadcast channel with linear transceivers, in Proceedings of the 14th International ITG Workshop on Smart Antennas WSA (2010), pp. 342–349

    Google Scholar 

  102. T. Bogale, L. Vandendorpe, Robust sum MSE optimization for downlink multiuser MIMO systems with arbitrary power constraint: generalized duality approach. IEEE Trans. Signal Process. 60(4), 1862 (2012)

    Google Scholar 

  103. G. Dartmann, X. Gong, W. Afzal, G. Ascheid, On the duality of the max-min beamforming problem with per-antenna and per-antenna-array power constraints. IEEE Trans. Veh. Technol. 62(2), 606 (2013)

    Google Scholar 

  104. G.H. Golub, C.F. van Loan, Matrix Computations, 3rd edn. (The Johns Hopkins University Press, Baltimore, NY, 1996)

    MATH  Google Scholar 

  105. D. Cai, T. Quek, C.W. Tan, S. Low, Max-min weighted SINR in coordinated multicell MIMO downlink, in Proceedings of the 9th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (2011), pp. 286–293

    Google Scholar 

  106. S. He, Y. Huang, L. Yang, A. Nallanathan, P. Liu, A multi-cell beamforming design by uplink-downlink max-min SINR duality. IEEE Trans. Wirel. Commun. 11(8), 2858 (2012)

    Google Scholar 

  107. D. Luenberger, Quasi-convex programming. SIAM J. Appl. Math. 16(5), 1090 (1968)

    Google Scholar 

  108. J. Penot, M. Volle, Surrogate programming and multipliers in quasi-convex programming. SIAM J. Control Optim. 42(6), 1994 (2004)

    Google Scholar 

  109. F. Glover, Surrogate constraint duality in mathematical programming. Oper. Res. 23(3), 434 (1975)

    Google Scholar 

  110. A.B. Gershman, Z.Q. Luo, S. Shahbazpanahi, Robust Adaptive Beamforming Based on Worst-Case Performance Optimization, Chap. 2 (Wiley, New York, 2005), pp. 49–89

    Google Scholar 

  111. J. Lindblom, E. Larsson, E. Jorswieck, Parameterization of the MISO IFC rate region: the case of partial channel state information. IEEE Trans. Wirel. Commun. 9(2), 500 (2010)

    Google Scholar 

  112. E. Karipidis, A. Gründinger, J. Lindblom, E. Larsson, Pareto-optimal beamforming for the MISO interference channel with partial CSI, in Proceedings of the 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (2009), pp. 5–8

    Google Scholar 

  113. B. Hassibi, B.M. Hochwald, How much training is needed in multiple-antenna wireless links?. IEEE Trans. Inf. Theory 49(4), 951 (2003)

    Google Scholar 

  114. N. Jindal, MIMO broadcast channels with finite-rate feedback. IEEE Trans. Inf. Theory 52(11), 5045 (2006)

    Google Scholar 

  115. S. Ji, S. Wu, A.C. So, W.K. Ma, Multi-group multicast beamforming in cognitive radio networks via rank-two transmit beamformed alamouti space-time coding, in Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2013), pp. 4409–4413

    Google Scholar 

  116. L. Li, A. Goldsmith, Capacity and optimal resource allocation for fading broadcast channels: I. Ergodic capacity. IEEE Trans. Inf. Theory 47(3), 1083 (2001)

    Google Scholar 

  117. T. Yoo, A. Goldsmith, Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE Trans. Inf. Theory 52(5), 2203 (2006)

    Google Scholar 

  118. F.A. Dietrich, W. Utschick, P. Breun, Linear precoding based on a stochastic MSE criterion, in 13th European Signal Processing Conference (2005)

    Google Scholar 

  119. M. Ding, S. Blostein, MIMO minimum total MSE transceiver design with imperfect CSI at both ends. IEEE Trans. Signal Process. 57(3), 1141 (2009)

    Google Scholar 

  120. R. Henrion. Introduction to chance constrained programming. Introduction Tutorial in E-Collection https://stoprog.org (2003), https://stoprog.org

  121. M. Shenouda, T. Davidson, Probabilistically-constrained approaches to the design of the multiple antenna downlink, in Proceedings of the 42nd Asilomar Conference on Signals, Systems, and Computers (2008), pp. 1120–1124

    Google Scholar 

  122. A. Gründinger, M. Joham, W. Utschick, Design of beamforming in the satellite downlink with static and mobile users, in Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove (2011)

    Google Scholar 

  123. A. Gründinger, D. Leiner, M. Joham, C. Hellings, W. Utschick, Ergodic robust rate balancing for rank-one vector broadcast channels via sequential approximations, in Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2013), pp. 4744–4748

    Google Scholar 

  124. A. Gründinger, R. Bethenod, M. Joham, M. Riemensberger, W. Utschick, Optimal power allocation for the chance-constrained vector broadcast channel and rank-one channel approximation, in Proceedings of the 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2013), pp. 31–35

    Google Scholar 

  125. A. Gründinger, M. Joham, W. Utschick, Balancing for Interference-Limited Multi-User Satellite Communications, Chap. 8 (Springer, New York, 2015), pp. 165–198

    Google Scholar 

  126. G. Alfano, A.M. Tulino, A. Lozano, S. Verdú, Capacity of MIMO channels with one-sided correlation, in IEEE Eighth International Symposium on Spread Spectrum Techniques and Applications (2005), pp. 515–519

    Google Scholar 

  127. H. Shin, M.Z. Win, J.H. Lee, M. Chiani, On the capacity of doubly correlated MIMO channels. IEEE Trans. Wirel. Commun. 5(8), 2253 (2006)

    Google Scholar 

  128. B. Marks, G. Wright, Technical note–a general inner approximation algorithm for nonconvex mathematical programs. Oper. Res. 26(4), 681 (1978)

    Google Scholar 

  129. H. Tuy, F. Al-Khayyal, P. Thach, Monotonic optimization: branch and cut methods, in Essays and Surveys in Global Optimization, Chap. 2 (Springer, New York, NY, 2005), pp. 39–78

    Google Scholar 

  130. D. Guo, S. Shamai, S. Verdú, Mutual information and minimum mean-square error in Gaussian channels. IEEE Trans. Inf. Theory 51(4), 1261 (2005)

    Google Scholar 

  131. S. Christensen, R. Agarwal, E. Carvalho, J. Cioffi, Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design. IEEE Trans. Wirel. Commun. 7(12), 4792 (2008)

    Google Scholar 

  132. A. Gründinger, M. Joham, W. Utschick, Stochastic transceiver design in point-to-point MIMO channels with imperfect CSI, in Proceedings of the 15th International ITG Workshop on Smart Antennas WSA, Aachen (2011)

    Google Scholar 

  133. A. Gründinger, M. Joham, W. Utschick, Stochastic transceiver design in multi-antenna channels with statistical channel state information, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP, Prague (2011)

    Google Scholar 

  134. F. Wang, X. Yuan, S.C. Liew, D. Guo, Wireless MIMO switching: weighted sum mean square error and sum rate optimization. IEEE Trans. Inf. Theory 59(9), 5297 (2013)

    Google Scholar 

  135. M. Kießling, Statistical Analysis and Transmit Prefiltering for MIMO Wireless Systems in Correlated Fading Environments, Dissertation, University of Stuttgart (2004)

    Google Scholar 

  136. R. Hunger, M. Joham, W. Utschick, On the MSE-duality of the broadcast channel and the multiple access channel. IEEE Trans. Signal Process. 57(2), 698 (2009)

    Google Scholar 

  137. M. Joham, M. Vonbun, W. Utschick, MIMO BC/MAC MSE duality with imperfect transmitter and perfect receiver CSI, in Proceedings of the 11th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2010)

    Google Scholar 

  138. J.P. González-Coma, A. Gründinger, M. Joham, L. Castedo Ribas, W. Utschick, Multi-stream MIMO MSE balancing with generalized power constraints, in Proceedings of the 15th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2016)

    Google Scholar 

  139. J.P. González-Coma, A. Gründinger, M. Joham, L. Castedo Ribas, W. Utschick, On MSE balancing in the MIMO broadcast channel with unequal targets, in Proceedings of the 19th International ITG Workshop on Smart Antennas WSA, Munich (2016)

    Google Scholar 

  140. J.P. González-Coma, A. Gründinger, M. Joham, L. Castedo Ribas, MSE balancing in the MIMO BC: unequal targets and probabilistic interference constraints. IEEE Trans. Signal Process. 65(12), 3293 (2017)

    Google Scholar 

  141. F. Boccardi, H. Huang, M. Trivellato, Multiuser eigenmode transmission for MIMO broadcast channels with limited feedback, in Proceedings of the 7th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2007)

    Google Scholar 

  142. M. Kobayashi, G. Caire, Joint beamforming and scheduling for a multi-antenna downlink with imperfect transmitter channel knowledge. IEEE J. Sel. Areas Commun. 25(7), 1468 (2007)

    Google Scholar 

  143. S. Vorobyov, Y. Rong, A. Gershman, Robust adaptive beamforming using probability-constrained optimization, in IEEE/SP 13th Workshop on Statistical Signal Processing (2005), pp. 934–939

    Google Scholar 

  144. N. Vučić, H. Boche, Robust QoS-constrained optimization of downlink multiuser MISO systems. IEEE Trans. Signal Process. 57(2), 714 (2009)

    Google Scholar 

  145. K.Y. Wang, T.H. Chang, W.K. Ma, A.C. So, C.Y. Chi, Probabilistic SINR constrained robust transmit beamforming: a Bernstein-type inequality based conservative approach, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 3080–3083

    Google Scholar 

  146. I. Bechar, A Bernstein-type inequality for stochastic processes of quadratic forms Gaussian variables (2009). https://arxiv.org/abs/0909.3595

  147. K.Y. Wang, T.H. Chang, W.K. Ma, C.Y. Chi, A semidefinite relaxation based conservative approach to robust transmit beamforming with probabilistic SINR constraints, in Proceedings of the 18th European Signal Processing Conference EUSIPCO (2010), pp. 407–411

    Google Scholar 

  148. J.P. Imhof, Computing the distribution of quadratic forms in normal variables. Biometrika 48(3/4), 419 (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gründinger, A. (2020). Multi-User Downlink Communication. In: Statistical Robust Beamforming for Broadcast Channels and Applications in Satellite Communication. Foundations in Signal Processing, Communications and Networking, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-29578-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29578-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29577-6

  • Online ISBN: 978-3-030-29578-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics