We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Random Data Wave Equations | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Random Data Wave Equations

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Singular Random Dynamics

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nowadays we have many methods allowing to exploit the regularising properties of the linear part of a nonlinear dispersive equation (such as the KdV equation, the nonlinear wave or the nonlinear Schrödinger equations) in order to prove well-posedness in low regularity Sobolev spaces. By well-posedness in low regularity Sobolev spaces we mean that less regularity than the one imposed by the energy methods is required (the energy methods do not exploit the dispersive properties of the linear part of the equation). In many cases these methods to prove well-posedness in low regularity Sobolev spaces lead to optimal results in terms of the regularity of the initial data. By optimal we mean that if one requires slightly less regularity then the corresponding Cauchy problem becomes ill-posed in the Hadamard sense. We call the Sobolev spaces in which these ill-posedness results hold spaces of supercritical regularity. More recently, methods to prove probabilistic well-posedness in Sobolev spaces of supercritical regularity were developed. More precisely, by probabilistic well-posedness we mean that one endows the corresponding Sobolev space of supercritical regularity with a non degenerate probability measure and then one shows that almost surely with respect to this measure one can define a (unique) global flow. However, in most of the cases when the methods to prove probabilistic well-posedness apply, there is no information about the measure transported by the flow. Very recently, a method to prove that the transported measure is absolutely continuous with respect to the initial measure was developed. In such a situation, we have a measure which is quasi-invariant under the corresponding flow.

The aim of these lectures is to present all of the above described developments in the context of the nonlinear wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interestingly, variants of the Khinchin inequality will be essentially used in our probabilistic approach to the cubic defocusing wave equation with data of super-critical regularity.

References

  1. A. Ayache, N. Tzvetkov, L p properties of Gaussian random series. Trans. Am. Math. Soc. 360, 4425–4439 (2008)

    Article  MathSciNet  Google Scholar 

  2. A. Benyi, T. Oh, O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \(\mathbb R^d\), d ≥ 3. Trans. Am. Math. Soc. Ser. B 2, 1–50 (2015)

    Google Scholar 

  3. J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166, 1–26 (1994)

    Article  Google Scholar 

  4. J. Bourgain, Invariant measures for the 2d-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176, 421–445 (1996)

    Article  Google Scholar 

  5. J. Bourgain, A. Bulut, Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3D ball. J. Funct. Anal. 266, 2319–2340 (2014)

    Article  MathSciNet  Google Scholar 

  6. N. Burq, N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I. Local theory. Invent. Math. 173, 449–475 (2008)

    Article  MathSciNet  Google Scholar 

  7. N. Burq, N. Tzvetkov, Random data Cauchy theory for supercritical wave equations II. A global existence result. Invent. Math. 173, 477–496 (2008)

    Article  Google Scholar 

  8. N. Burq, N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation. J. Eur. Math. Soc. 16, 1–30 (2014)

    Article  MathSciNet  Google Scholar 

  9. N. Burq, L. Thomann, N. Tzvetkov, Global infinite energy solutions for the cubic wave equation. Bull. Soc. Math. Fr. 143, 301–313 (2015)

    Article  MathSciNet  Google Scholar 

  10. R.H. Cameron, W.T. Martin, Transformation of Wiener integrals under translations. Ann. Math. 45, 386–396 (1944)

    Article  MathSciNet  Google Scholar 

  11. M. Christ, A. Kiselev, Maximal functions associated to filtrations. J. Funct. Anal. 179, 409–425 (2001)

    Article  MathSciNet  Google Scholar 

  12. M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, Preprint, November 2003

    Google Scholar 

  13. J. Colliander, T. Oh, Almost sure local well-posedness of the cubic NLS below L 2. Duke Math. J. 161, 367–414 (2012)

    Article  MathSciNet  Google Scholar 

  14. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. Math. Res. Lett. 9, 659–682 (2002)

    Article  MathSciNet  Google Scholar 

  15. A.B. Cruzeiro, Equations différentielles sur l’espace de Wiener et formules de Cameron-Martin non linéaires. J. Funct. Anal. 54, 206–227 (1983)

    Article  MathSciNet  Google Scholar 

  16. G. Da Prato, A. Debussche, Strong solutions to the stochastic quantization equations. Ann. Probab. 31, 1900–1916 (2003)

    Article  MathSciNet  Google Scholar 

  17. L. Farah, F. Rousset, N. Tzvetkov, Oscillatory integrals and global well-posedness for the 2D Boussinesq equation. Bull. Braz. Math. Soc. 43, 655–679 (2012)

    Article  MathSciNet  Google Scholar 

  18. I. Gallagher, F. Planchon, On global solutions to a defocusing semi-linear wave equation. Rev. Mat. Iberoamericana 19, 161–177 (2003)

    Article  MathSciNet  Google Scholar 

  19. J. Ginibre, G. Velo, Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133, 50–68 (1995)

    Article  MathSciNet  Google Scholar 

  20. M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical non linearity. Ann. Math. 132, 485–509 (1990)

    Article  MathSciNet  Google Scholar 

  21. M. Grillakis, Regularity for the wave equation with a critical non linearity. Commun. Pures Appl. Math. 45, 749–774 (1992)

    Article  Google Scholar 

  22. M. Gubinelli, P. Imkeller, P. Perkowski, Paracontrolled distributions and singular PDEs. Forum Math. varPi 3, e6, 75 pp. (2015)

    Google Scholar 

  23. M. Hairer, Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)

    Article  MathSciNet  Google Scholar 

  24. M. Hairer, A theory of regularity structures. Invent. Math. 198, 269–504 (2014)

    Article  MathSciNet  Google Scholar 

  25. M. Hairer, K. Matetski, Discretisations of rough stochastic PDEs. Ann. Probab. 46, 1651–1709 (2018)

    Article  MathSciNet  Google Scholar 

  26. S. Kakutani, On equivalence of infinite product measures. Ann. Math. 49, 214–224 (1948)

    Article  MathSciNet  Google Scholar 

  27. C. Kenig, G. Ponce, L. Vega, Global well-posedness for semi-linear wave equations. Commun. Partial Differ. Equ. 25, 1741–1752 (2000)

    Article  MathSciNet  Google Scholar 

  28. G. Lebeau, Perte de régularité pour les équation d’ondes sur-critiques. Bull. Soc. Math. Fr. 133, 145–157 (2005)

    Article  Google Scholar 

  29. E. Lieb, M. Loss, Analysis. Graduate Studies in Mathematics, vol. 14 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  30. H. Lindblad, C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130, 357–426 (1995)

    Article  MathSciNet  Google Scholar 

  31. J. Lührmann, D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on \(\mathbb R^3\). Commun. Partial Differ. Equ. 39, 2262–2283 (2014)

    Article  MathSciNet  Google Scholar 

  32. J.C. Mourrat, H. Weber, The dynamic \(\Phi ^4_3\) model comes down from infinity. Commun. Math. Phys. 356, 673–753 (2017)

    Article  MathSciNet  Google Scholar 

  33. A. Nahmod, G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space. J. Eur. Math. Soc. 17, 1687–1759 (2015)

    Article  MathSciNet  Google Scholar 

  34. T. Oh, A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces. Funkcial. Ekvac. 60, 259–277 (2017)

    Article  MathSciNet  Google Scholar 

  35. T. Oh, O. Pocovnicu, Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on \(\mathbb R^3\). J. Math. Pures Appl. 105, 342–366 (2016)

    Google Scholar 

  36. T. Oh, O. Pocovnicu, A remark on almost sure global well-posedness of the energy-critical defocusing nonlinear wave equations in the periodic setting. Tohoku Math. J. 69, 455–481 (2017)

    Article  MathSciNet  Google Scholar 

  37. T. Oh, N. Tzvetkov, Quasi-invariant Gaussian measures for the two-dimensional defocusing cubic nonlinear wave equation. J. Eur. Math. Soc. (to appear)

    Google Scholar 

  38. O. Pocovnicu, Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on \(\mathbb R^d\), d = 4 and 5. J. Eur. Math. Soc. 19, 2521–2575 (2017)

    Article  MathSciNet  Google Scholar 

  39. R. Ramer, On nonlinear transformations of Gaussian measures. J. Funct. Anal. 15, 166–187 (1974)

    Article  MathSciNet  Google Scholar 

  40. T. Roy, Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on \(\mathbb R^3\). Discrete Contin. Dynam. Syst. A 24, 1307–1323 (2009)

    Google Scholar 

  41. J. Shatah, M. Struwe, Regularity results for nonlinear wave equations. Ann. Math. 138, 503–518 (1993)

    Article  MathSciNet  Google Scholar 

  42. J. Shatah, M. Struwe, Well-posedness in the energy space for semi-linear wave equations with critical growth. Int. Math. Res. Not. 1994, 303–309 (1994)

    Article  Google Scholar 

  43. C. Sun, B. Xia, Probabilistic well-posedness for supercritical wave equation on \(\mathbb T^3\). Ill. J. Math. 60, 481–503 (2016)

    Google Scholar 

  44. N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation. Probab. Theory Relat. Fields 146, 481–514 (2010)

    Article  MathSciNet  Google Scholar 

  45. N. Tzvetkov, Quasi-invariant Gaussian measures for one dimensional Hamiltonian PDE’s. Forum Math. Sigma 3, e28, 35 pp. (2015)

    Google Scholar 

  46. N. Tzvetkov, N. Visciglia, Invariant measures and long-time behavior for the Benjamin-Ono equation. Int. Math. Res. Not. 2014, 4679–4714 (2014)

    Article  MathSciNet  Google Scholar 

  47. N. Tzvetkov, N. Visciglia, Invariant measures and long time behaviour for the Benjamin-Ono equation II. J. Math. Pures Appl. 103, 102–141 (2015)

    Article  MathSciNet  Google Scholar 

  48. B. Xia, Equations aux dérivées partielles et aléa, PhD thesis, University of Paris Sud, July 2016

    Google Scholar 

Download references

Acknowledgements

I am grateful to Leonardo Tolomeo, Tadahiro Oh and Yuzhao Wang for their remarks on the manuscript. I am very grateful to Chenmin Sun for pointing our an error in a previous version of Lemma 4.1.32. I am particularly indebted to Nicolas Burq and Tadahiro Oh since this text benefitted from the discussions we had on the topics discussed in the lectures. I am grateful to Franco Flandoli and Massimiliano Gubinelli for inviting me to give these lectures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Tzvetkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzvetkov, N. (2019). Random Data Wave Equations. In: Flandoli, F., Gubinelli, M., Hairer, M. (eds) Singular Random Dynamics . Lecture Notes in Mathematics(), vol 2253. Springer, Cham. https://doi.org/10.1007/978-3-030-29545-5_4

Download citation

Publish with us

Policies and ethics