Skip to main content

Horizontal Gene Transfer in Fungi

  • Chapter
  • First Online:
Grand Challenges in Fungal Biotechnology

Abstract

Horizontal gene transfer (HGT), the sharing of genes between species outside of inheritance, is a common feature among prokaryotes, but a growing body of evidence supports HGT in eukaryotic genomes. The driving forces behind horizontal gene transfer occur within a shared environment and are selective—meaning they improve survivability of stress, increase nutrient access, or provide an evolutionary advantage. The development of toxic and pathogenic properties was one of the first indications of phenotypic transfer among fungal species. A growing species diversity of genome sequences has brought a new set of tools to tracking HGT. The detection of HGT based on sequence similarity utilizes species tree phylogenies, which compare similarity of core-conserved genes to determine lineage. Divergence of an HGT candidate gene from a phylogenetic background tree can show interspecies DNA transfer. It is by following phenotypes and analysis of DNA sequence context and content that we can uncover previous transfer events and track lab-fostered and recorded HGT. Evidence of HGT is found heavily in parasitic and pathogenic fungi; both of these lifestyles rely on phagocytosis and assimilation of host parts and pieces, suggesting phagocytosis is implicated in DNA uptake mechanisms. Our understanding of the molecular mechanisms of DNA uptake and incorporation of foreign DNA into fungal genomes, i.e., natural competence, remains based on a set of laboratory conditions used in molecular transformation. The mechanism of DNA uptake in the natural world and new DNA incorporation remain under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akagi Y, Akamatsu H, Otani H, Kodama M (2009) Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot Cell 8:1732–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K et al (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SE, Thykaer J, Adney WS, Brettin TS, Brockman FJ, D’haeseleer P, Martinez AD, Miller RM, Rokhsar DS, Schadt CWJFBR (2008) Fungal genome sequencing and bioenergy. Fungal Biol Rev 22:1–5

    Article  Google Scholar 

  • Barrus MJPDR (1942) Yellow-spot disease of wheat in New York state. Plant Dis Rep 26:246

    Google Scholar 

  • Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A 102:14332–14337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catharina L, Carels N (2018) Specific enzyme functionalities of Fusarium oxysporum compared to host plants. Gene 676:219–226

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, Abraham AL, Ceppi M, Conseiller E, Debuchy R et al (2014) Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat Commun 5:2876

    Article  PubMed  CAS  Google Scholar 

  • Cheng XX, Zhao LH, Klosterman SJ, Feng HJ, Feng ZL, Wei F, Shi YQ, Li ZF, Zhu HQ (2017) The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses. Plant Sci 259:12–23

    Article  CAS  PubMed  Google Scholar 

  • Ciuffetti LM, Manning VA, Pandelova I, Betts MF, Martinez JP (2010) Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. New Phytol 187:911–919

    Article  CAS  PubMed  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NTJGR (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong E, van Berkel WJ, van der Zwan RP, de Bont JA (1992) Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. Eur J Biochem 208:651–657

    Article  PubMed  Google Scholar 

  • Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang D, Miao Y, Rahimi MJ, Grujic M, Cai F, Pourmehdi S et al (2018) Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet 14:e1007322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duarte I, Huynen MAJB (2019) Contribution of lateral gene transfer to the evolution of the eukaryotic fungus piromyces sp. E2: massive bacterial transfer of genes involved in carbohydrate metabolism. bioRxiv:514042

    Google Scholar 

  • Dujon BA, Louis EJ (2017) Genome diversity and evolution in the budding yeasts (Saccharomycotina). Genetics 206:717–750

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupont PY, Cox MP (2017) Genomic data quality impacts automated detection of lateral gene transfer in fungi. G3 (Bethesda) 7:1301–1314

    Article  CAS  Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    Article  CAS  PubMed  Google Scholar 

  • Gibbons JG, Salichos L, Slot JC, Rinker DC, McGary KL, King JG, Klich MA, Tabb DL, McDonald WH, Rokas A (2012) The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae. Curr Biol 22:1403–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladyshev E (2017) Repeat-induced point mutation and other genome defense mechanisms in fungi. Microbiol Spectr 5. https://doi.org/10.1128/microbiolspec.FUNK-0042-2017

  • Gojkovic Z, Knecht W, Zameitat E, Warneboldt J, Coutelis JB, Pynyaha Y, Neuveglise C, Moller K, Loffler M, Piskur J (2004) Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol Gen Genomics 271:387–393

    Article  CAS  Google Scholar 

  • Goodwin SB, Fry WEJEM (1994) Genetic analyses of interspecific hybrids between Phytophthora infestans and Phytophthora mirabilis. Exp Mycol 18:20–32

    Article  Google Scholar 

  • Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JWJM (2011) Fueling the future with fungal genomics. Mycology 2:192–209

    Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski FJNAR (2013) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gygli G, de Vries RP, van Berkel WJH (2018) On the origin of vanillyl alcohol oxidases. Fungal Genet Biol 116:24–32

    Article  CAS  PubMed  Google Scholar 

  • Hammond TM (2017) Sixteen years of meiotic silencing by unpaired DNA. Adv Genet 97:1–42

    Article  CAS  PubMed  Google Scholar 

  • Harimoto Y, Hatta R, Kodama M, Yamamoto M, Otani H, Tsuge T (2007) Expression profiles of genes encoded by the supernumerary chromosome controlling AM-toxin biosynthesis and pathogenicity in the apple pathotype of Alternaria alternata. Mol Plant-Microbe Interact 20:1463–1476

    Article  CAS  PubMed  Google Scholar 

  • Harimoto Y, Tanaka T, Kodama M, Yamamoto M, Otani H, Tsuge TJJOGPP (2008) Multiple copies of AMT2 are prerequisite for the apple pathotype of Alternaria alternata to produce enough AM-toxin for expressing pathogenicity. J Gen Plant Pathol 74:222–229

    Article  CAS  Google Scholar 

  • Hawes M, Allen C, Turgeon BG, Curlango-Rivera G, Minh Tran T, Huskey DA, Xiong Z (2016) Root border cells and their role in plant defense. Annu Rev Phytopathol 54:143–161

    Article  CAS  PubMed  Google Scholar 

  • Higgins SA, Schadt CW, Matheny PB, Loffler FE (2018) Phylogenomics reveal the dynamic evolution of fungal nitric oxide reductases and their relationship to secondary metabolism. Genome Biol Evol 10:2474–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H, Nasir A (2017). A preliminary list of horizontally transferred genes in prokaryotes determined by tree reconstruction and reconciliation. Front Genet 8:112

    Google Scholar 

  • Kafer E, Witchell GR (1984) Effects of neurospora nuclease halo (nuh) mutants on secretion of two phosphate-repressible alkaline deoxyribonucleases. Biochem Genet 22:403–417

    Article  CAS  PubMed  Google Scholar 

  • Kavanaugh LA, Fraser JA, Dietrich FS (2006) Recent evolution of the human pathogen cryptococcus neoformans by intervarietal transfer of a 14-gene fragment. Mol Biol Evol 23:1879–1890

    Article  CAS  PubMed  Google Scholar 

  • Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioeng Bugs 1:395–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Citovsky V (2016) Transfer of DNA from bacteria to eukaryotes. MBio 7

    Google Scholar 

  • Laurence MH, Summerell BA, Burgess LW, Liew EC (2014) Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol 118:374–384

    Article  PubMed  Google Scholar 

  • Laurence MH, Summerell BA, Liew ECY (2015) Fusarium oxysporum f. sp. canariensis: evidence for horizontal gene transfer of putative pathogenicity genes. Plant Pathol 64:1068–1075

    Article  Google Scholar 

  • Li M, Zhao J, Tang N, Sun H, Huang J (2018) Horizontal gene transfer from bacteria and plants to the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 9:701

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang X, Wang B, Dong Q, Li L, Rollins JA, Zhang R, Sun G (2018) Pathogenic adaptations of colletotrichum fungi revealed by genome wide gene family evolutionary analyses. PLoS One 13:e0196303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, Keller NP, Rodrigues F, Goldman GH, Rokas A (2017) Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biol 15:e2003583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacGurn JA, Hsu PC, Smolka MB, Emr SD (2011) TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell 147:1104–1117

    Article  CAS  PubMed  Google Scholar 

  • Marsit S, Mena A, Bigey F, Sauvage FX, Couloux A, Guy J, Legras JL, Barrio E, Dequin S, Galeote V (2015) Evolutionary advantage conferred by an eukaryote-to-eukaryote gene transfer event in wine yeasts. Mol Biol Evol 32:1695–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin F, Cullen D, Hibbett D, Pisabarro A, Spatafora JW, Baker SE, Grigoriev IVJNP (2011) Sequencing the fungal tree of life. New Phytol 190:818–821

    Article  CAS  PubMed  Google Scholar 

  • McCarthy CGP, Fitzpatrick DA (2019) Pan-genome analyses of model fungal species. Microb Genomics 5

    Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    Article  CAS  PubMed  Google Scholar 

  • Mehrabi R, Bahkali AH, Abd-Elsalam KA, Moslem M, Ben M’barek S, Gohari AM, Jashni MK, Stergiopoulos I, Kema GH, de Wit PJ (2011) Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiol Rev 35:542–554

    Article  CAS  PubMed  Google Scholar 

  • Mitrikeski PT (2015) Ecologically driven competence for exogenous DNA uptake in yeast. Curr Microbiol 70:883–893

    Article  CAS  PubMed  Google Scholar 

  • Morel G, Sterck L, Swennen D, Marcet-Houben M, Onesime D, Levasseur A, Jacques N, Mallet S, Couloux A, Labadie KJSR (2015) Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Sci Rep 5:11571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy C, Youssef N, Hanafy RA, Couger M, Stajich JE, Wang Y, Baker K, Dagar S, Griffith G, Farag IJB (2018) Horizontal gene transfer as an indispensible driver for Neocallimastigomycota evolution into a distinct gut-dwelling fungal lineage. Appl Environ Microbiol:487215

    Google Scholar 

  • Nisikado YJBDOIFLF (1929) Studies on the Helminthosporium diseases of Gramineae in Japan. Ber Ohara Inst landw Forsch 4:111–126

    Google Scholar 

  • Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras JL, Wincker P, Casaregola S et al (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106:16333–16338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietro AD, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MI (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325

    Article  PubMed  Google Scholar 

  • Plissonneau C, Hartmann FE, Croll D (2018) Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol 16:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC (1995) The centromere: hub of chromosomal activities. Science 270:1591–1594

    Article  CAS  PubMed  Google Scholar 

  • Qiu H, Cai G, Luo J, Bhattacharya D, Zhang N (2016) Extensive horizontal gene transfers between plant pathogenic fungi. BMC Biol 14:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravenhall M, Skunca N, Lassalle F, Dessimoz C (2015) Inferring horizontal gene transfer. PLoS Comput Biol 11:e1004095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Read ND, Lichius A, Shoji JY, Goryachev AB (2009) Self-signalling and self-fusion in filamentous fungi. Curr Opin Microbiol 12:608–615

    Article  PubMed  Google Scholar 

  • Riccombeni A, Vidanes G, Proux-Wera E, Wolfe KH, Butler G (2012) Sequence and analysis of the genome of the pathogenic yeast Candida orthopsilosis. PLoS One 7:e35750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca MG, Davide LC, Davide LM, Mendes-Costa MC, Schwan RF, Wheals AEJMR (2004) Conidial anastomosis fusion between Colletotrichum species. Mycol Res 108:1320–1326

    Article  PubMed  Google Scholar 

  • Rolland T, Neuveglise C, Sacerdot C, Dujon B (2009) Insertion of horizontally transferred genes within conserved syntenic regions of yeast genomes. PLoS One 4:e6515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slot JC, Hibbett DS (2007) Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS One 2:e1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slot JC, Rokas AJCB (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134–139

    Article  CAS  PubMed  Google Scholar 

  • Stachel SE, Zambryski PC (1989) Bacteria-yeast conjugation. Generic trans-kingdom sex? Nature 340:190–191

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Chen W, Ivanov S, MacLean AM, Wight H, Ramaraj T, Mudge J, Harrison MJ, Fei Z (2019) Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. New Phytol 221:1556–1573

    Article  CAS  PubMed  Google Scholar 

  • Syme R, Martin A, Wyatt N, Lawrence J, Muria-Gonzalez M, Friesen T, Ellwood SJFIG (2018) Transposable element genomic fissuring in Pyrenophora teres is associated with genome expansion and dynamics of host-pathogen genetic interactions. Front Genet 9:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szollosi GJ, Davin AA, Tannier E, Daubin V, Boussau B (2015) Genome-scale phylogenetic analysis finds extensive gene transfer among fungi. Philos Trans R Soc Lond Ser B Biol Sci 370:20140335

    Article  CAS  Google Scholar 

  • Tang KJ, Lu YY, Sun FZ (2018) Background adjusted alignment-free dissimilarity measures improve the detection of horizontal gene transfer. Front Microbiol 9:711

    Article  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial ‘pan-genome’. Proc Natl Acad Sci U S A 102:16530

    Article  CAS  Google Scholar 

  • Van Wyk S, Wingfield BD, De Vos L, Santana QC, Van der Merwe NA, Steenkamp ET (2018) Multiple independent origins for a subtelomeric locus associated with growth rate in Fusarium circinatum. IMA Fungus 9:27–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30:167–171

    Article  CAS  PubMed  Google Scholar 

  • Wapinski I, Pfeffer A, Friedman N, Regev A (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449:54–61

    Article  CAS  PubMed  Google Scholar 

  • Whitaker JW, McConkey GA, Westhead DR (2009) The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biol 10:R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wijayawardena BK, Minchella DJ, DeWoody JA (2013) Hosts, parasites, and horizontal gene transfer. Trends Parasitol 29:329–338

    Article  CAS  PubMed  Google Scholar 

  • Wolny-Koładka KAJJOES, Health PB (2014) In vitro effects of various xenobiotics on Fusarium spp. strains isolated from cereals. J Environ Sci Health B 49:864–870

    Article  PubMed  CAS  Google Scholar 

  • Yu SC, Dawson A, Henderson AC, Lockyer EJ, Read E, Sritharan G, Ryan M, Sgroi M, Ngou PM, Woodruff R et al (2016) Nutrient supplements boost yeast transformation efficiency. Sci Rep 6:35738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Battelle Memorial Institute

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bredeweg, E.L., Baker, S.E. (2020). Horizontal Gene Transfer in Fungi. In: Nevalainen, H. (eds) Grand Challenges in Fungal Biotechnology. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-29541-7_11

Download citation

Publish with us

Policies and ethics